STA447/2006 Midterm #2, March 21, 2019
(135 minutes; 9 questions; 4 pages; total points = 60)
[SOLUTIONS]

1. [5] Let S ={1,2,3,4}, with m, = 1/8, my = 3/8, and 73 = my = 1/4. Find (with
proof) transition probabilities {p;;}: jes for a Markov chain on S, such that p;; = 0 whenever

(n)

li — 7] > 2, and lim p;;” = m; for all 4,7 € S.

Solution. The Metropolis algorithm says we can let p; ;11 = %min[l, ] and pi;y =
1

5 min[l, %] and pi,i =1 _pi,i—H — pi,i—l‘ TbUS, p172 = p374 = ]_/2, p273 = %[(1/4)/(3/8)] =
1/3, and pso = pas = 1/2, poq = %[(1/8)/(3/8)] = 1/6, and then p;; = 1 — (1/2) = 1/2,
paz = 1= (1/3) = (1/6) = 1/2, pys = 1 — (1/2) = (1/2) = 0, and prs = 1 — (1/2) = 1/2.
That is,

1/2 1/2 0 0

1/6 1/2 1/3 0

0o 1/2 0 1/2

0 0 1/2 1/2

Then p;; = 0 whenever |i — j| > 2. And P is reversible with respect to m by construction, so
7 Is stationary. Also the chain is irreducible since it is possible to go 1 — 2 — 3 — 4 and

4 — 3 — 2 — 1. And the chain is aperiodic since e.g. p11 > 0. So, by the Markov Chain
(n)

ij

P =

Convergence Theorem, nh_)rgo p;; =m; foralli,jes.

2. [5] Consider the Markov chain with state space S = {1,2, 3,4}, v3 = 1, and transition
probabilities specified by pi11 = pa2 = 1, p31 = p32 = paz = paa = 1/4, and pyg = paz = pay =
1/3. Compute P3(T} < T3). [Hint: Don’t forget how we solved Gambler’s Ruin.]

Solution. Let s(a) = P,(T1 < Ty). Then s(1) = 1 since we've already reached 1, and
s(2) = 0 since we have already reached 2. Also, by conditioning on the first step (just like
for solving Gambler’s Ruin), we have that for a = 3 or 4, s(a) = 3, pa;s(j). So, setting
a =3, 5(3) = (1/4)s(1) + (1/4)5(2) + (1/4)5(3) + (1/40)s(4) = (1/4) + (1/0)s(3) + (1/4)s(4),
ie. 4s(3) = 1+ s(3) + s(4), i.e. 35(3) — 1 = s(4). Also, setting a = 4, s(4) = (1/3)s(2) +
(1/3)s(3)+(1/3)s(4) = (1/3)s(3)+(1/3)s(4), i.e. (2/3)s(4) = (1/3)s(3), i.e. s(4) = (1/2)s(3).
Hence, 35(3) — 1 = (1/2)s(3), i.e. (5/2)s(3) =1, so s(3) =2/5, i.e. P3(T1 < Ty) = 2/5.

3. Consider a graph with vertex set V' = {1, 2, 3,4}, and edge weights w(1,2) = w(2,1) =
2, w(1,3) = w(3,1) = 3, w(l,4) = w(4,1) = 4, and w(u,v) = 0 otherwise. Let {X,} be
random walk on this graph, with X, = 1.

(a) [2] Compute (with explanation) P(X; = 4).

Solution. Since Xog = 1, P(X1 = 4) = piy = w(1,4)/d(4) = w(1,4)/ > w(l,j) = 4/(2 +
34 4) = 4/9.

(b) [3] Compute (with explanation) P(X3 = 4).

Solution. Here P(X3 = 4) = Pﬁ) = Yk DPLPkPRa = > P1PjiP1e = (2/9)(1)(4/9) +

(3/9)(1)(4/9) + (4/9)(1)(4/9) = 4/9.
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2
determine whether or not the limit exists, and if yes then what it equals.

Solution. This graph is bipartite (with subsets {1} and {2,3,4}), so P(X,, =4) =0 for n
even, while P(X, = 4) > 0 (and converges to 2d(4)/Z)) for n odd. So, Jim P(X, =4) does
not exist. However, since the graph is connected, and Z = Y, d(u) = 9+2+43+4 = 18 < o0,
by Graph Average Convergence we have that lim TP(X, =4)+P(X,p1 =4)] =d(4)/Z =
4/18 = 2/9.

(c) [4] For each of (i) lim P(X, = 4), and (ii) Ji_{glol[P(Xn =4)+ P(X,1 = 4)],

4. [5] Suppose we repeatedly roll a fair six-sided die (which is equally likely to show 1, 2,
3,4, 5, or 6). Let 7 be the number of rolls until we see 5 twice in a row, i.e. until the pattern
“55” first appears. Let z = E(7). Compute z.

Solution. Let X,, be the amount of the pattern “55” that we have achieved after the n'®
roll (starting over as soon as we complete it). Then {X,,} is a Markov chain on S = {0,1, 2},
with transitions pog = 5/6, po1 = 1/6, p1o = 5/6, p1a = 1/6, pay = 5/6, and py; = 1/6. Its
stationary distribution m must satisfy that 7P = 7, i.e. mopo; + mip1; + Tepe; = m; for all
j € S. Setting j = 0 gives my(5/6) + m1(5/6) + m(5/6) = m, and since 7wy + w1 + w9 = 1 this
means that 7y = 5/6. Setting j = 1 gives mo(1/6) + m2(1/6) = m, i.e. 1 = (5/36) + (1/6) 7.
Setting j = 2 gives m(1/6) = mq, i.e. m = 6my. Thus, 6my = (5/36) + (1/6)me, whence
(35/6)m = 5/36, so my = (5/36)/(35/6) = (5/6)/35 = 1/(6 x 7) = 1/42. But z is the
expected time to go from 0 to 2, or equivalently the mean recurrence time of the state 2.
Hence, by the Recurrence Time Theorem, z = 1/my = 42.

5. [4] In the previous question, let X be the sum of all the numbers up to but not including
the first “55”, and let Y be the sum of all the numbers up to and including the first “55”.
Compute E(X) and E(Y). [Note: If you could not solve the previous question, then you
may leave your answers to this question in terms of the unknown value z.]

Solution. Here 7 is a stopping time with finite mean. And, Y is a sum of ii.d. dice
rolls up to time 7, each with mean 3.5. Hence, by Wald’s Theorem, E(Y) = (3.5)E(7) =
(3.5)z = (3.5)(42) = 147. Now, T — 2 is not a stopping time (since it looks into the
future), so we cannot use Wald’s Theorem for X. But we always have X =Y — 10 whence

E(X)=E(Y)—10 = (3.5)z — 10 = 147 — 10 = 137.

6. Let {X,} be a Markov chain on the state space S = {1,2, 3,4}, with X, = 3, and with
transition probabilities p1; = pyy = 1, pa1 = 1/4, pss = 1/5, and pay = p31 = p1a = p13 =
Pra=pa =pi2o=ps3=0. Let T=inf{n >0: X, =1or4}, andlet U =T — 1.

(a) [4] Find valid values of pag, pas, p32, and pss, which make {X,,} a martingale.
Solution. We need 3; j pa; = 2, i.e. pa1(1) 4 p22(2) 4 p23(3) = 2, whence pas = pa1 = 1/4.
Then py; = 1—(1/4)—(1/4) = 1/2. And, weneed 3; j p3; = 3, i.e. p32(2)+p33(3)+psa(4) = 3,
whence pss = p3s = 1/5. Then ps3 =1 — (1/5) — (1/5) = 3/5.

(b) [2] For the values found in part (a), compute E(Xr).

Solution. Clearly the chain is bounded up to time T, indeed we always have |X,| < 4.
Hence, by the Optional Stopping Corollary, E(Xr) = E(X,) = 3.
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(c) [3] For the values found in part (a), compute p = P(Xr = 4).

Solution. We must have Xp =1 or4,soP(Xy =1) = 1—p, and E(X7) = p(4)+(1-p)(1) =
1+ 3p. Hence, by part (b), 3 =1+ 3p, sop=2/3, ie. P(Xr =4) =2/3.

(d) [3] For the values found in part (a), compute E(Xy).

Solution. Here U is not a stopping time, so we cannot apply the Optional Stopping The-
orem. However, if X7 = 1 then we must have Xy = 2, while if X = 4 then we must have
D+ B)P(Xr=4)=(2)(1/3)+ (3)(2/3) = 8/3.

7. Consider a Markov chain {X,,} with state space S = {0,1,2,3,...}, with pop = 1, and
Pio = Di2i = 1/2 for all i > 1, and with X, =5. Let T'=inf{n > 1: X,, = 0}.

(a) [2] Determine whether or not {X,} is a martingale.

Solution. Yes. For each i € S, we have Y ;jpy; = (0)(1/2) + (2i)(1/2) = i. Also,
| X, <5(2") so E|X,,| < co. Hence, {X,,} is a martingale.

(b) [2] Determine whether or not E(X,,) =5 for each fixed n € N.

Solution. Yes. Since {X,} is a martingale, therefore E(X,) = E(Xy) = 5 for each fixed
n € N.

(c) [2] Determine whether or not P(T" < o0) = 1.

Solution. Yes. Here we have probability 1/2 of moving to 0 at each step, so P(T > k) =
(1/2)F which — 0 as k — oo, i.e. P(T' = o) = 0, so P(T < o0) = 1. (Aside: This also means
that X,, — 0, i.e. that {X,} converges with probability 1, as it must do by the Martingale
Convergence Theoren.)

(d) [2] Determine whether or not E(Xr) = 5.

Solution. No. Here we always have Xp = 0, whence E(Xr) = 0 # 5.

8. Let {B:}i>0 be standard Brownian motion, and let 7 = inf{t > 0: B, = —2 or 3}.

(a) [3] Compute E[(2+ By + B3)?].

Solution. Here E[(2+ By + B3)?] = E[4+ B? + B3 + 4By + 4B3 + 2By B3] = 4 + Var(By) +
Var(B3) + 4E(B;) + 4E(B3) + 2Cov(B2,B3) = 4 + 2 + 3 + 4(0) + 4(0) + 2min|2,3] =
442+3+04+0+4=13.

(b) [3] Compute p=P[B, = 3].

Solution. Here T is a stopping time, and { B} is bounded (between —2 and 3) up to time
7. So, by the Optional Stopping Corollary, E(B;) = E(B,) =0, i.e. p(3) + (1 — p)(—2) =0,
ie.bp—2=0, sop=2/5.

9. Suppose cars arrive according to a Poisson process with rate A = 3 cars per minute, and
each car is independently either Blue with probability 1/2, or Green with probability 1/3,
or Red with probability 1/6.
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(a) [3] Let S be the arrival time of the first car that arrives after at least 5 minutes (so
we must have S > 5). Compute (with explanation) the expected value E(S).

Solution. The interarrival times of a Poisson Process with rate A are Exponential(\). By
the memoryless property of the Exponential distribution, the time to the next arrival after
5 minutes has the same distribution. So, S = 5+ U, where U ~ Exponential(3). Hence,
E(S)=5+EU) =5+ (1/A) =5+ (1/3) = 16/3.

(b) [3] Compute (with explanation) the probability that, in the first 2 minutes, exactly
2 Blue and 1 Green cars arrive.

Solution. By Poisson Thinning, the number of Blue cars is a Poisson Process with rate
A1 = A(1/2) = 3/2, and the number of Green cars are a Poisson Process with rate Ay =
A(1/3) = 1, and the two processes are independent. Hence, the probability that exactly 2
Blue and 1 Green cars arrive in the first 2 minutes is equal to

[END OF EXAMINATION; total points = 60|
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