
STA447/2006 Midterm #2, March 21, 2019

(135 minutes; 9 questions; 4 pages; total points = 60)

[SOLUTIONS]

1. [5] Let S = {1, 2, 3, 4}, with π1 = 1/8, π2 = 3/8, and π3 = π4 = 1/4. Find (with
proof) transition probabilities {pij}i,j∈S for a Markov chain on S, such that pij = 0 whenever

|i− j| ≥ 2, and lim
n→∞

p
(n)
ij = πj for all i, j ∈ S.

Solution. The Metropolis algorithm says we can let pi,i+1 = 1
2

min[1, πi+1

πi
] and pi,i−1 =

1
2

min[1, πi−1

πi
] and pi,i = 1 − pi,i+1 − pi,i−1. Thus, p1,2 = p3,4 = 1/2, p2,3 = 1

2
[(1/4)/(3/8)] =

1/3, and p3,2 = p4,3 = 1/2, p2,1 = 1
2
[(1/8)/(3/8)] = 1/6, and then p1,1 = 1 − (1/2) = 1/2,

p2,2 = 1 − (1/3) − (1/6) = 1/2, p3,3 = 1 − (1/2) − (1/2) = 0, and p4,4 = 1 − (1/2) = 1/2.
That is,

P =


1/2 1/2 0 0
1/6 1/2 1/3 0
0 1/2 0 1/2
0 0 1/2 1/2

 .

Then pij = 0 whenever |i− j| ≥ 2. And P is reversible with respect to π by construction, so
π is stationary. Also the chain is irreducible since it is possible to go 1 → 2 → 3 → 4 and
4 → 3 → 2 → 1. And the chain is aperiodic since e.g. p1,1 > 0. So, by the Markov Chain

Convergence Theorem, lim
n→∞

p
(n)
ij = πj for all i, j ∈ S.

2. [5] Consider the Markov chain with state space S = {1, 2, 3, 4}, ν3 = 1, and transition
probabilities specified by p11 = p22 = 1, p31 = p32 = p33 = p34 = 1/4, and p42 = p43 = p44 =
1/3. Compute P3(T1 < T2). [Hint: Don’t forget how we solved Gambler’s Ruin.]

Solution. Let s(a) = Pa(T1 < T2). Then s(1) = 1 since we’ve already reached 1, and
s(2) = 0 since we have already reached 2. Also, by conditioning on the first step (just like
for solving Gambler’s Ruin), we have that for a = 3 or 4, s(a) =

∑
j pajs(j). So, setting

a = 3, s(3) = (1/4)s(1) + (1/4)s(2) + (1/4)s(3) + (1/4)s(4) = (1/4) + (1/4)s(3) + (1/4)s(4),
i.e. 4s(3) = 1 + s(3) + s(4), i.e. 3s(3) − 1 = s(4). Also, setting a = 4, s(4) = (1/3)s(2) +
(1/3)s(3)+(1/3)s(4) = (1/3)s(3)+(1/3)s(4), i.e. (2/3)s(4) = (1/3)s(3), i.e. s(4) = (1/2)s(3).
Hence, 3s(3)− 1 = (1/2)s(3), i.e. (5/2)s(3) = 1, so s(3) = 2/5, i.e. P3(T1 < T2) = 2/5.

3. Consider a graph with vertex set V = {1, 2, 3, 4}, and edge weights w(1, 2) = w(2, 1) =
2, w(1, 3) = w(3, 1) = 3, w(1, 4) = w(4, 1) = 4, and w(u, v) = 0 otherwise. Let {Xn} be
random walk on this graph, with X0 = 1.

(a) [2] Compute (with explanation) P(X1 = 4).

Solution. Since X0 = 1, P(X1 = 4) = p14 = w(1, 4)/d(4) = w(1, 4)/
∑
j w(1, j) = 4/(2 +

3 + 4) = 4/9.

(b) [3] Compute (with explanation) P(X3 = 4).

Solution. Here P(X3 = 4) = p
(3)
14 =

∑
j,k p1jpjkpk4 =

∑
j p1jpj1p14 = (2/9)(1)(4/9) +

(3/9)(1)(4/9) + (4/9)(1)(4/9) = 4/9.

[Solutions: Page 1 of 4.]



(c) [4] For each of (i) lim
n→∞

P(Xn = 4), and (ii) lim
n→∞

1
2
[P(Xn = 4) + P(Xn+1 = 4)],

determine whether or not the limit exists, and if yes then what it equals.

Solution. This graph is bipartite (with subsets {1} and {2, 3, 4}), so P(Xn = 4) = 0 for n
even, while P(Xn = 4) > 0 (and converges to 2 d(4)/Z)) for n odd. So, lim

n→∞
P(Xn = 4) does

not exist. However, since the graph is connected, and Z =
∑
u d(u) = 9+2+3+4 = 18 <∞,

by Graph Average Convergence we have that lim
n→∞

1
2
[P(Xn = 4) +P(Xn+1 = 4)] = d(4)/Z =

4/18 = 2/9.

4. [5] Suppose we repeatedly roll a fair six-sided die (which is equally likely to show 1, 2,
3, 4, 5, or 6). Let τ be the number of rolls until we see 5 twice in a row, i.e. until the pattern
“55” first appears. Let z = E(τ). Compute z.

Solution. Let Xn be the amount of the pattern “55” that we have achieved after the nth

roll (starting over as soon as we complete it). Then {Xn} is a Markov chain on S = {0, 1, 2},
with transitions p00 = 5/6, p01 = 1/6, p10 = 5/6, p12 = 1/6, p20 = 5/6, and p21 = 1/6. Its
stationary distribution π must satisfy that πP = π, i.e. π0p0j + π1p1j + π2p2j = πj for all
j ∈ S. Setting j = 0 gives π0(5/6) + π1(5/6) + π2(5/6) = π0, and since π0 + π1 + π2 = 1 this
means that π0 = 5/6. Setting j = 1 gives π0(1/6) +π2(1/6) = π1, i.e. π1 = (5/36) + (1/6)π2.
Setting j = 2 gives π1(1/6) = π2, i.e. π1 = 6π2. Thus, 6π2 = (5/36) + (1/6)π2, whence
(35/6)π2 = 5/36, so π2 = (5/36)/(35/6) = (5/6)/35 = 1/(6 × 7) = 1/42. But z is the
expected time to go from 0 to 2, or equivalently the mean recurrence time of the state 2.
Hence, by the Recurrence Time Theorem, z = 1/π2 = 42.

5. [4] In the previous question, let X be the sum of all the numbers up to but not including
the first “55”, and let Y be the sum of all the numbers up to and including the first “55”.
Compute E(X) and E(Y ). [Note: If you could not solve the previous question, then you
may leave your answers to this question in terms of the unknown value z.]

Solution. Here τ is a stopping time with finite mean. And, Y is a sum of i.i.d. dice
rolls up to time τ , each with mean 3.5. Hence, by Wald’s Theorem, E(Y ) = (3.5)E(τ) =
(3.5)z = (3.5)(42) = 147. Now, τ − 2 is not a stopping time (since it looks into the
future), so we cannot use Wald’s Theorem for X. But we always have X = Y − 10 whence
E(X) = E(Y )− 10 = (3.5)z − 10 = 147− 10 = 137.

6. Let {Xn} be a Markov chain on the state space S = {1, 2, 3, 4}, with X0 = 3, and with
transition probabilities p11 = p44 = 1, p21 = 1/4, p34 = 1/5, and p24 = p31 = p12 = p13 =
p14 = p41 = p42 = p43 = 0. Let T = inf{n ≥ 0 : Xn = 1 or 4}, and let U = T − 1.

(a) [4] Find valid values of p22, p23, p32, and p33, which make {Xn} a martingale.

Solution. We need
∑
j j p2j = 2, i.e. p21(1) + p22(2) + p23(3) = 2, whence p23 = p21 = 1/4.

Then p22 = 1−(1/4)−(1/4) = 1/2. And, we need
∑
j j p3j = 3, i.e. p32(2)+p33(3)+p34(4) = 3,

whence p32 = p34 = 1/5. Then p33 = 1− (1/5)− (1/5) = 3/5.

(b) [2] For the values found in part (a), compute E(XT ).

Solution. Clearly the chain is bounded up to time T , indeed we always have |Xn| ≤ 4.
Hence, by the Optional Stopping Corollary, E(XT ) = E(X0) = 3.
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(c) [3] For the values found in part (a), compute p = P(XT = 4).

Solution. We must haveXT = 1 or 4, so P(XT = 1) = 1−p, and E(XT ) = p(4)+(1−p)(1) =
1 + 3p. Hence, by part (b), 3 = 1 + 3p, so p = 2/3, i.e. P(XT = 4) = 2/3.

(d) [3] For the values found in part (a), compute E(XU).

Solution. Here U is not a stopping time, so we cannot apply the Optional Stopping The-
orem. However, if XT = 1 then we must have XU = 2, while if XT = 4 then we must have
XU = 3. Hence, E(XU) =

∑
` `P(XU = `) = (2)P(XU = 2) + (3)P(XU = 3) = (2)P(XT =

1) + (3)P(XT = 4) = (2)(1/3) + (3)(2/3) = 8/3.

7. Consider a Markov chain {Xn} with state space S = {0, 1, 2, 3, . . .}, with p0,0 = 1, and
pi,0 = pi,2i = 1/2 for all i ≥ 1, and with X0 = 5. Let T = inf{n ≥ 1 : Xn = 0}.

(a) [2] Determine whether or not {Xn} is a martingale.

Solution. Yes. For each i ∈ S, we have
∑
j j pij = (0)(1/2) + (2i)(1/2) = i. Also,

|Xn| ≤ 5(2n) so E|Xn| <∞. Hence, {Xn} is a martingale.

(b) [2] Determine whether or not E(Xn) = 5 for each fixed n ∈ N.

Solution. Yes. Since {Xn} is a martingale, therefore E(Xn) = E(X0) = 5 for each fixed
n ∈ N.

(c) [2] Determine whether or not P(T <∞) = 1.

Solution. Yes. Here we have probability 1/2 of moving to 0 at each step, so P(T ≥ k) =
(1/2)k which→ 0 as k →∞, i.e. P(T =∞) = 0, so P(T <∞) = 1. (Aside: This also means
that Xn → 0, i.e. that {Xn} converges with probability 1, as it must do by the Martingale
Convergence Theorem.)

(d) [2] Determine whether or not E(XT ) = 5.

Solution. No. Here we always have XT = 0, whence E(XT ) = 0 6= 5.

8. Let {Bt}t≥0 be standard Brownian motion, and let τ = inf{t > 0 : Bt = −2 or 3}.

(a) [3] Compute E[(2 +B2 +B3)
2].

Solution. Here E[(2 +B2 +B3)
2] = E[4 +B2

2 +B2
3 + 4B2 + 4B3 + 2B2B3] = 4 + Var(B2) +

Var(B3) + 4E(B2) + 4E(B3) + 2Cov(B2, B3) = 4 + 2 + 3 + 4(0) + 4(0) + 2 min[2, 3] =
4 + 2 + 3 + 0 + 0 + 4 = 13.

(b) [3] Compute p = P[Bτ = 3].

Solution. Here τ is a stopping time, and {Bt} is bounded (between −2 and 3) up to time
τ . So, by the Optional Stopping Corollary, E(Bτ ) = E(B0) = 0, i.e. p(3) + (1− p)(−2) = 0,
i.e. 5p− 2 = 0, so p = 2/5.

9. Suppose cars arrive according to a Poisson process with rate λ = 3 cars per minute, and
each car is independently either Blue with probability 1/2, or Green with probability 1/3,
or Red with probability 1/6.
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(a) [3] Let S be the arrival time of the first car that arrives after at least 5 minutes (so
we must have S > 5). Compute (with explanation) the expected value E(S).

Solution. The interarrival times of a Poisson Process with rate λ are Exponential(λ). By
the memoryless property of the Exponential distribution, the time to the next arrival after
5 minutes has the same distribution. So, S = 5 + U , where U ∼ Exponential(3). Hence,
E(S) = 5 + E(U) = 5 + (1/λ) = 5 + (1/3) = 16/3.

(b) [3] Compute (with explanation) the probability that, in the first 2 minutes, exactly
2 Blue and 1 Green cars arrive.

Solution. By Poisson Thinning, the number of Blue cars is a Poisson Process with rate
λ1 = λ(1/2) = 3/2, and the number of Green cars are a Poisson Process with rate λ2 =
λ(1/3) = 1, and the two processes are independent. Hence, the probability that exactly 2
Blue and 1 Green cars arrive in the first 2 minutes is equal to(

e−2λ1
[2λ1]

2

2!

)(
e−2λ2

[2λ2]
1

1!

)
=

(
e−2(3/2)

[2(3/2)]2

2

)(
e−2(1)

[2(1)]1

1

)
= 9 e−5 .

[END OF EXAMINATION; total points = 60]

[Solutions: Page 4 of 4.]


