STA447/2006 Midterm \#2, March 21, 2019
 (135 minutes; 9 questions; 4 pages; total points $=60$)
 [SOLUTIONS]

1. [5] Let $S=\{1,2,3,4\}$, with $\pi_{1}=1 / 8, \pi_{2}=3 / 8$, and $\pi_{3}=\pi_{4}=1 / 4$. Find (with proof) transition probabilities $\left\{p_{i j}\right\}_{i, j \in S}$ for a Markov chain on S, such that $p_{i j}=0$ whenever $|i-j| \geq 2$, and $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\pi_{j}$ for all $i, j \in S$.
Solution. The Metropolis algorithm says we can let $p_{i, i+1}=\frac{1}{2} \min \left[1, \frac{\pi_{i+1}}{\pi_{i}}\right]$ and $p_{i, i-1}=$ $\frac{1}{2} \min \left[1, \frac{\pi_{i-1}}{\pi_{i}}\right]$ and $p_{i, i}=1-p_{i, i+1}-p_{i, i-1}$. Thus, $p_{1,2}=p_{3,4}=1 / 2$, $p_{2,3}=\frac{1}{2}[(1 / 4) /(3 / 8)]=$ $1 / 3$, and $p_{3,2}=p_{4,3}=1 / 2, p_{2,1}=\frac{1}{2}[(1 / 8) /(3 / 8)]=1 / 6$, and then $p_{1,1}=1-(1 / 2)=1 / 2$, $p_{2,2}=1-(1 / 3)-(1 / 6)=1 / 2, p_{3,3}=1-(1 / 2)-(1 / 2)=0$, and $p_{4,4}=1-(1 / 2)=1 / 2$. That is,

$$
P=\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 6 & 1 / 2 & 1 / 3 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 1 / 2 & 1 / 2
\end{array}\right)
$$

Then $p_{i j}=0$ whenever $|i-j| \geq 2$. And P is reversible with respect to π by construction, so π is stationary. Also the chain is irreducible since it is possible to go $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ and $4 \rightarrow 3 \rightarrow 2 \rightarrow 1$. And the chain is aperiodic since e.g. $p_{1,1}>0$. So, by the Markov Chain Convergence Theorem, $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\pi_{j}$ for all $i, j \in S$.
2. [5] Consider the Markov chain with state space $S=\{1,2,3,4\}, \nu_{3}=1$, and transition probabilities specified by $p_{11}=p_{22}=1, p_{31}=p_{32}=p_{33}=p_{34}=1 / 4$, and $p_{42}=p_{43}=p_{44}=$ $1 / 3$. Compute $\mathbf{P}_{3}\left(T_{1}<T_{2}\right)$. [Hint: Don't forget how we solved Gambler's Ruin.]
Solution. Let $s(a)=\mathbf{P}_{a}\left(T_{1}<T_{2}\right)$. Then $s(1)=1$ since we've already reached 1, and $s(2)=0$ since we have already reached 2. Also, by conditioning on the first step (just like for solving Gambler's Ruin), we have that for $a=3$ or 4 , $s(a)=\sum_{j} p_{a j} s(j)$. So, setting $a=3, s(3)=(1 / 4) s(1)+(1 / 4) s(2)+(1 / 4) s(3)+(1 / 4) s(4)=(1 / 4)+(1 / 4) s(3)+(1 / 4) s(4)$, i.e. $4 s(3)=1+s(3)+s(4)$, i.e. $3 s(3)-1=s(4)$. Also, setting $a=4, s(4)=(1 / 3) s(2)+$ $(1 / 3) s(3)+(1 / 3) s(4)=(1 / 3) s(3)+(1 / 3) s(4)$, i.e. $(2 / 3) s(4)=(1 / 3) s(3)$, i.e. $s(4)=(1 / 2) s(3)$. Hence, $3 s(3)-1=(1 / 2) s(3)$, i.e. $(5 / 2) s(3)=1$, so $s(3)=2 / 5$, i.e. $\mathbf{P}_{3}\left(T_{1}<T_{2}\right)=2 / 5$.
3. Consider a graph with vertex set $V=\{1,2,3,4\}$, and edge weights $w(1,2)=w(2,1)=$ $2, w(1,3)=w(3,1)=3, w(1,4)=w(4,1)=4$, and $w(u, v)=0$ otherwise. Let $\left\{X_{n}\right\}$ be random walk on this graph, with $X_{0}=1$.
(a) [2] Compute (with explanation) $\mathbf{P}\left(X_{1}=4\right)$.

Solution. Since $X_{0}=1, \mathbf{P}\left(X_{1}=4\right)=p_{14}=w(1,4) / d(4)=w(1,4) / \sum_{j} w(1, j)=4 /(2+$ $3+4)=4 / 9$.
(b) [3] Compute (with explanation) $\mathbf{P}\left(X_{3}=4\right)$.

Solution. Here $\mathbf{P}\left(X_{3}=4\right)=p_{14}^{(3)}=\sum_{j, k} p_{1 j} p_{j k} p_{k 4}=\sum_{j} p_{1 j} p_{j 1} p_{14}=(2 / 9)(1)(4 / 9)+$ $(3 / 9)(1)(4 / 9)+(4 / 9)(1)(4 / 9)=4 / 9$.
(c) [4] For each of (i) $\lim _{n \rightarrow \infty} \mathbf{P}\left(X_{n}=4\right)$, and (ii) $\lim _{n \rightarrow \infty} \frac{1}{2}\left[\mathbf{P}\left(X_{n}=4\right)+\mathbf{P}\left(X_{n+1}=4\right)\right]$, determine whether or not the limit exists, and if yes then what it equals.
Solution. This graph is bipartite (with subsets $\{1\}$ and $\{2,3,4\}$), so $\mathbf{P}\left(X_{n}=4\right)=0$ for n even, while $\mathbf{P}\left(X_{n}=4\right)>0$ (and converges to $\left.2 d(4) / Z\right)$) for n odd. So, $\lim _{n \rightarrow \infty} \mathbf{P}\left(X_{n}=4\right)$ does not exist. However, since the graph is connected, and $Z=\sum_{u} d(u)=9+2+3+4=18<\infty$, by Graph Average Convergence we have that $\lim _{n \rightarrow \infty} \frac{1}{2}\left[\mathbf{P}\left(X_{n}=4\right)+\mathbf{P}\left(X_{n+1}=4\right)\right]=d(4) / Z=$ $4 / 18=2 / 9$.
4. [5] Suppose we repeatedly roll a fair six-sided die (which is equally likely to show 1,2 , $3,4,5$, or 6). Let τ be the number of rolls until we see 5 twice in a row, i.e. until the pattern " 55 " first appears. Let $z=\mathbf{E}(\tau)$. Compute z.
Solution. Let X_{n} be the amount of the pattern " 55 " that we have achieved after the $n^{\text {th }}$ roll (starting over as soon as we complete it). Then $\left\{X_{n}\right\}$ is a Markov chain on $S=\{0,1,2\}$, with transitions $p_{00}=5 / 6, p_{01}=1 / 6, p_{10}=5 / 6, p_{12}=1 / 6, p_{20}=5 / 6$, and $p_{21}=1 / 6$. Its stationary distribution π must satisfy that $\pi P=\pi$, i.e. $\pi_{0} p_{0 j}+\pi_{1} p_{1 j}+\pi_{2} p_{2 j}=\pi_{j}$ for all $j \in S$. Setting $j=0$ gives $\pi_{0}(5 / 6)+\pi_{1}(5 / 6)+\pi_{2}(5 / 6)=\pi_{0}$, and since $\pi_{0}+\pi_{1}+\pi_{2}=1$ this means that $\pi_{0}=5 / 6$. Setting $j=1$ gives $\pi_{0}(1 / 6)+\pi_{2}(1 / 6)=\pi_{1}$, i.e. $\pi_{1}=(5 / 36)+(1 / 6) \pi_{2}$. Setting $j=2$ gives $\pi_{1}(1 / 6)=\pi_{2}$, i.e. $\pi_{1}=6 \pi_{2}$. Thus, $6 \pi_{2}=(5 / 36)+(1 / 6) \pi_{2}$, whence $(35 / 6) \pi_{2}=5 / 36$, so $\pi_{2}=(5 / 36) /(35 / 6)=(5 / 6) / 35=1 /(6 \times 7)=1 / 42$. But z is the expected time to go from 0 to 2 , or equivalently the mean recurrence time of the state 2 . Hence, by the Recurrence Time Theorem, $z=1 / \pi_{2}=42$.
5. [4] In the previous question, let X be the sum of all the numbers up to but not including the first " 55 ", and let Y be the sum of all the numbers up to and including the first " 55 ". Compute $\mathbf{E}(X)$ and $\mathbf{E}(Y)$. [Note: If you could not solve the previous question, then you may leave your answers to this question in terms of the unknown value z.]

Solution. Here τ is a stopping time with finite mean. And, Y is a sum of i.i.d. dice rolls up to time τ, each with mean 3.5. Hence, by Wald's Theorem, $\mathbf{E}(Y)=(3.5) \mathbf{E}(\tau)=$ $(3.5) z=(3.5)(42)=147$. Now, $\tau-2$ is not a stopping time (since it looks into the future), so we cannot use Wald's Theorem for X. But we always have $X=Y-10$ whence $\mathbf{E}(X)=\mathbf{E}(Y)-10=(3.5) z-10=147-10=137$.
6. Let $\left\{X_{n}\right\}$ be a Markov chain on the state space $S=\{1,2,3,4\}$, with $X_{0}=3$, and with transition probabilities $p_{11}=p_{44}=1, p_{21}=1 / 4, p_{34}=1 / 5$, and $p_{24}=p_{31}=p_{12}=p_{13}=$ $p_{14}=p_{41}=p_{42}=p_{43}=0$. Let $T=\inf \left\{n \geq 0: X_{n}=1\right.$ or 4$\}$, and let $U=T-1$.
(a) [4] Find valid values of p_{22}, p_{23}, p_{32}, and p_{33}, which make $\left\{X_{n}\right\}$ a martingale.

Solution. We need $\sum_{j} j p_{2 j}=2$, i.e. $p_{21}(1)+p_{22}(2)+p_{23}(3)=2$, whence $p_{23}=p_{21}=1 / 4$. Then $p_{22}=1-(1 / 4)-(1 / 4)=1 / 2$. And, we need $\sum_{j} j p_{3 j}=3$, i.e. $p_{32}(2)+p_{33}(3)+p_{34}(4)=3$, whence $p_{32}=p_{34}=1 / 5$. Then $p_{33}=1-(1 / 5)-(1 / 5)=3 / 5$.
(b) [2] For the values found in part (a), compute $\mathbf{E}\left(X_{T}\right)$.

Solution. Clearly the chain is bounded up to time T, indeed we always have $\left|X_{n}\right| \leq 4$. Hence, by the Optional Stopping Corollary, $\mathbf{E}\left(X_{T}\right)=\mathbf{E}\left(X_{0}\right)=3$.
[Solutions: Page 2 of 4.]
(c) [3] For the values found in part (a), compute $p=\mathbf{P}\left(X_{T}=4\right)$.

Solution. We must have $X_{T}=1$ or 4 , so $\mathbf{P}\left(X_{T}=1\right)=1-p$, and $\mathbf{E}\left(X_{T}\right)=p(4)+(1-p)(1)=$ $1+3 p$. Hence, by part (b), $3=1+3 p$, so $p=2 / 3$, i.e. $\mathbf{P}\left(X_{T}=4\right)=2 / 3$.
(d) [3] For the values found in part (a), compute $\mathbf{E}\left(X_{U}\right)$.

Solution. Here U is not a stopping time, so we cannot apply the Optional Stopping Theorem. However, if $X_{T}=1$ then we must have $X_{U}=2$, while if $X_{T}=4$ then we must have $X_{U}=3$. Hence, $\mathbf{E}\left(X_{U}\right)=\sum_{\ell} \ell \mathbf{P}\left(X_{U}=\ell\right)=(2) \mathbf{P}\left(X_{U}=2\right)+(3) \mathbf{P}\left(X_{U}=3\right)=(2) \mathbf{P}\left(X_{T}=\right.$ $1)+(3) \mathbf{P}\left(X_{T}=4\right)=(2)(1 / 3)+(3)(2 / 3)=8 / 3$.
7. Consider a Markov chain $\left\{X_{n}\right\}$ with state space $S=\{0,1,2,3, \ldots\}$, with $p_{0,0}=1$, and $p_{i, 0}=p_{i, 2 i}=1 / 2$ for all $i \geq 1$, and with $X_{0}=5$. Let $T=\inf \left\{n \geq 1: X_{n}=0\right\}$.
(a) [2] Determine whether or not $\left\{X_{n}\right\}$ is a martingale.

Solution. Yes. For each $i \in S$, we have $\sum_{j} j p_{i j}=(0)(1 / 2)+(2 i)(1 / 2)=i$. Also, $\left|X_{n}\right| \leq 5\left(2^{n}\right)$ so $\mathbf{E}\left|X_{n}\right|<\infty$. Hence, $\left\{X_{n}\right\}$ is a martingale.
(b) [2] Determine whether or not $\mathbf{E}\left(X_{n}\right)=5$ for each fixed $n \in \mathbf{N}$.

Solution. Yes. Since $\left\{X_{n}\right\}$ is a martingale, therefore $\mathbf{E}\left(X_{n}\right)=\mathbf{E}\left(X_{0}\right)=5$ for each fixed $n \in \mathbf{N}$.
(c) [2] Determine whether or not $\mathbf{P}(T<\infty)=1$.

Solution. Yes. Here we have probability $1 / 2$ of moving to 0 at each step, so $\mathbf{P}(T \geq k)=$ $(1 / 2)^{k}$ which $\rightarrow 0$ as $k \rightarrow \infty$, i.e. $\mathbf{P}(T=\infty)=0$, so $\mathbf{P}(T<\infty)=1$. (Aside: This also means that $X_{n} \rightarrow 0$, i.e. that $\left\{X_{n}\right\}$ converges with probability 1, as it must do by the Martingale Convergence Theorem.)
(d) $[2]$ Determine whether or not $\mathbf{E}\left(X_{T}\right)=5$.

Solution. No. Here we always have $X_{T}=0$, whence $\mathbf{E}\left(X_{T}\right)=0 \neq 5$.
8. Let $\left\{B_{t}\right\}_{t \geq 0}$ be standard Brownian motion, and let $\tau=\inf \left\{t>0: B_{t}=-2\right.$ or 3$\}$.
(a) $[3] \quad$ Compute $\mathbf{E}\left[\left(2+B_{2}+B_{3}\right)^{2}\right]$.

Solution. Here $\mathbf{E}\left[\left(2+B_{2}+B_{3}\right)^{2}\right]=\mathbf{E}\left[4+B_{2}^{2}+B_{3}^{2}+4 B_{2}+4 B_{3}+2 B_{2} B_{3}\right]=4+\operatorname{Var}\left(B_{2}\right)+$ $\operatorname{Var}\left(B_{3}\right)+4 \mathbf{E}\left(B_{2}\right)+4 \mathbf{E}\left(B_{3}\right)+2 \operatorname{Cov}\left(B_{2}, B_{3}\right)=4+2+3+4(0)+4(0)+2 \min [2,3]=$ $4+2+3+0+0+4=13$.
(b) [3] Compute $p=\mathbf{P}\left[B_{\tau}=3\right]$.

Solution. Here τ is a stopping time, and $\left\{B_{t}\right\}$ is bounded (between -2 and 3) up to time τ. So, by the Optional Stopping Corollary, $\mathbf{E}\left(B_{\tau}\right)=\mathbf{E}\left(B_{0}\right)=0$, i.e. $p(3)+(1-p)(-2)=0$, i.e. $5 p-2=0$, so $p=2 / 5$.
9. Suppose cars arrive according to a Poisson process with rate $\lambda=3$ cars per minute, and each car is independently either Blue with probability $1 / 2$, or Green with probability $1 / 3$, or Red with probability $1 / 6$.
(a) [3] Let S be the arrival time of the first car that arrives after at least 5 minutes (so we must have $S>5$). Compute (with explanation) the expected value $\mathbf{E}(S)$.
Solution. The interarrival times of a Poisson Process with rate λ are Exponential (λ). By the memoryless property of the Exponential distribution, the time to the next arrival after 5 minutes has the same distribution. So, $S=5+U$, where $U \sim$ Exponential(3). Hence, $\mathbf{E}(S)=5+\mathbf{E}(U)=5+(1 / \lambda)=5+(1 / 3)=16 / 3$.
(b) [3] Compute (with explanation) the probability that, in the first 2 minutes, exactly 2 Blue and 1 Green cars arrive.
Solution. By Poisson Thinning, the number of Blue cars is a Poisson Process with rate $\lambda_{1}=\lambda(1 / 2)=3 / 2$, and the number of Green cars are a Poisson Process with rate $\lambda_{2}=$ $\lambda(1 / 3)=1$, and the two processes are independent. Hence, the probability that exactly 2 Blue and 1 Green cars arrive in the first 2 minutes is equal to

$$
\left(e^{-2 \lambda_{1}} \frac{\left[2 \lambda_{1}\right]^{2}}{2!}\right)\left(e^{-2 \lambda_{2}} \frac{\left[2 \lambda_{2}\right]^{1}}{1!}\right)=\left(e^{-2(3 / 2)} \frac{[2(3 / 2)]^{2}}{2}\right)\left(e^{-2(1)} \frac{[2(1)]^{1}}{1}\right)=9 e^{-5} .
$$

[END OF EXAMINATION; total points $=60$]

