STA447/2006 Midterm \#1, February 7, 2019

(135 minutes; 4 questions; 3 pages; total points $=50$)
[SOLUTIONS]

1. Consider a Markov chain with state space $S=\{1,2,3\}$, and transition probabilities $p_{12}=1 / 2, p_{13}=1 / 2, p_{21}=1 / 3, p_{23}=2 / 3$, and $p_{31}=1$, otherwise $p_{i j}=0$.
(a) [2] Compute $p_{11}^{(2)}$.

Solution. $p_{11}^{(2)}=\sum_{j \in S} p_{1 j} p_{j 1}=p_{11} p_{11}+p_{12} p_{21}+p_{13} p_{31}=(0)(0)+(1 / 2)(1 / 3)+(1 / 2)(1)=$ $(1 / 6)+(1 / 2)=4 / 6=2 / 3$.
(b) [5] Find a probability distribution π which is stationary for this chain.

Solution. We need $\pi P=\pi$, i.e. $\sum_{i \in S} \pi_{i} p_{i j}=\pi_{j}$ for all $j \in S$. When $j=1$ this gives $\pi_{2}(1 / 3)+\pi_{3}(1)=\pi_{1}$, so $\pi_{3}=\pi_{1}-\pi_{2}(1 / 3)$. When $j=2$ this gives $\pi_{1}(1 / 2)=\pi_{2}$, so $\pi_{1}=2 \pi_{2}$. Combining the two equations, $\pi_{3}=2 \pi_{2}-\pi_{2}(1 / 3)=(5 / 3) \pi_{2}$. We need $\pi_{1}+\pi_{2}+\pi_{3}=1$, i.e. $2 \pi_{2}+\pi_{2}+(5 / 3) \pi_{2}=1$, i.e. $(14 / 3) \pi_{2}=1$. So, $\pi_{2}=3 / 14$. Then $\pi_{1}=2 \pi_{2}=6 / 14=3 / 7$, and $\pi_{3}=(5 / 3) \pi_{2}=(5 / 3)(3 / 14)=5 / 14$. As a check, when $j=3$ we need $\pi_{1}(1 / 2)+\pi_{2}(2 / 3)=\pi_{3}$, i.e. $\pi_{1}(1 / 2)+\pi_{2}(2 / 3)=\pi_{3}$, i.e. $(3 / 7)(1 / 2)+(3 / 14)(2 / 3)=(5 / 14)$, i.e. $(3 / 14)+(2 / 14)=$ (5/14), which also holds. So, the stationary distribution is $\pi=(3 / 7,3 / 14,5 / 14)$.
(c) [3] Determine if the chain is reversible with respect to π.

Solution. No, it is not, since e.g. $\pi_{1} p_{13}=(3 / 7)(1 / 2)=3 / 14$, while $\pi_{3} p_{31}=(5 / 14)(1)=$ $5 / 14$, so $\pi_{i} p_{i j} \neq \pi_{j} p_{j i}$ in this case.
(d) [6] Determine (with explanation) which of the following statements are true and which are false: (i) $\lim _{n \rightarrow \infty} p_{13}^{(n)}=\pi_{3}$. (ii) $\lim _{n \rightarrow \infty} \frac{1}{2}\left[p_{13}^{(n)}+p_{13}^{(n+1)}\right]=\pi_{3}$. (iii) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\ell=1}^{n} p_{13}^{(\ell)}=\pi_{3}$.
Solution. Here π is stationary by part (b), and the chain is irreducible since e.g. it can go $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$, and the chain is aperiodic since e.g. it can get from 1 to 1 in two steps $(1 \rightarrow 2 \rightarrow 1)$ or three steps $(1 \rightarrow 2 \rightarrow 3 \rightarrow 1)$ and $\operatorname{gcd}(2,3)=1$. Hence, by the Markov chain Convergence Theorem, $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\pi_{j}$ for all $i, j \in S$, so (i) holds. Then $\lim _{n \rightarrow \infty} \frac{1}{2}\left[p_{13}^{(n)}+p_{13}^{(n+1)}\right]=\frac{1}{2}\left[\lim _{n \rightarrow \infty} p_{13}^{(n)}+\lim _{n \rightarrow \infty} p_{13}^{(n+1)}\right]=\frac{1}{2}\left[\pi_{3}+\pi_{3}\right]=\pi_{3}$, so (ii) holds. And also, by Average Probability Convergence (or the theory of Cesàro sums), $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\ell=1}^{n} p_{13}^{(\ell)}=\pi_{3}$, so (iii) also holds. In summary, all three statements are true.
(e) [3] Determine (with explanation) whether or not $\sum_{n=1}^{\infty} p_{13}^{(n)}=\infty$.

Solution. Yes it does. The chain is irreducible since e.g. it can go $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$. And $|S|=3$ which is finite. So, by the Finite Space Theorem, $\sum_{n=1}^{\infty} p_{i j}^{(n)}=\infty$ for all i and j, including when $i=1$ and $j=3$.
2. Consider a Markov chain with state space $S=\{1,2,3,4\}$ and transition matrix:

$$
P=\left(\begin{array}{cccc}
1 / 4 & 1 / 2 & 1 / 8 & 1 / 8 \\
0 & 1 / 3 & 0 & 2 / 3 \\
0 & 0 & 1 & 0 \\
0 & 4 / 5 & 0 & 1 / 5
\end{array}\right)
$$

(a) [4] Specify (with explanation) which states are recurrent, and which are transient.

Solution. State 1 is transient, since from 1 with probability $3 / 4$ it leaves 1 immediately and never returns, so $f_{11}=1 / 4<1$. State 3 is recurrent, since from 3 it always stays at 3 , so $f_{33}=1$. States 2 and 4 are recurrent, since $C=\{2,4\}$ is a closed finite subset on which the chain is irreducible, so $f_{i j}=1$ for all $i, j \in C$, so $f_{22}=f_{44}=1$. Alternatively, use geometric series: $f_{22}=(1 / 3)+(2 / 3)(4 / 5)+(2 / 3)(1 / 5)(4 / 5)+(2 / 3)(1 / 5)^{2}(4 / 5)+\ldots=$ $(1 / 3)+(2 / 3)(4 / 5) /[1-(1 / 5)]=(1 / 3)+(2 / 3)(4 / 5) /(4 / 5)=(1 / 3)+(2 / 3)=1$, and similarly $f_{44}=(1 / 5)+(4 / 5)(2 / 3)+(4 / 5)(1 / 3)(2 / 3)+(4 / 5)(1 / 3)^{2}(2 / 3)+\ldots=(1 / 5)+(4 / 5)(2 / 3) /[1-$ $(1 / 3)]=(1 / 5)+(4 / 5)(2 / 3) /(2 / 3)=(1 / 5)+(4 / 5)=1$.
(b) [3] Compute f_{24}.

Solution. Again, $C=\{2,4\}$ is a closed finite subset on which the chain is irreducible, so $f_{i j}=1$ for all $i, j \in C$, so $f_{24}=1$. Alternatively, use a geometric series: $f_{24}=(2 / 3)+$ $(1 / 3)(2 / 3)+(1 / 3)^{2}(2 / 3)+\ldots=(2 / 3) /[1-(1 / 3)]=(2 / 3) /(2 / 3)=1$.
(c) $[3]$ Compute f_{14}.

Solution. When the chain leaves state 1, if it jumps to 3 then it will never hit 4, or if it jumps to 4 then it will of course hit state 4 , or if it jumps to 2 then it will eventually hit state 4 since $f_{24}=1$ from the previous part. So, f_{14} is the probability that the chain jumps to 2 or 4 [probability 5/8] when it leaves 1 [probability 3/4], i.e. $f_{14}=\mathbf{P}_{1}\left(X_{1}=2\right.$ or $\left.\left.4 \mid X_{1} \neq 1\right)=[(1 / 2)+1 / 8)\right] /(3 / 4)=(5 / 8) /(3 / 4)=5 / 6$. Alternatively, use geometric series: $f_{14}=\mathbf{P}_{1}($ eventually hit 2 or 4$)=(5 / 8)+(1 / 4)(5 / 8)+(1 / 4)^{2}(5 / 8)+\ldots=(5 / 8) /[1-(1 / 4)]=$ $(5 / 8) /(3 / 4)=5 / 6$.
(d) [3] Determine whether or not $\sum_{n=1}^{\infty} p_{24}^{(n)}=\infty$.

Solution. Yes. Again, $C=\{2,4\}$ is a closed finite subset on which the chain is irreducible, so $\sum_{n=1}^{\infty} p_{i j}=\infty$ for all $i, j \in C$, so yes $\sum_{n=1}^{\infty} p_{24}=\infty$.
(e) [3] Determine whether or not $\sum_{n=1}^{\infty} p_{14}^{(n)}=\infty$.

Solution. Yes. For example, note that by Chapman-Kolmogorov, $p_{14}^{(n+1)} \geq p_{12} p_{24}^{(n)}=$ $(1 / 2) p_{24}^{(n)}$. So, $\sum_{n=1}^{\infty} p_{14}^{(n)} \geq \sum_{n=1}^{\infty} p_{14}^{(n+1)} \geq(1 / 2) \sum_{n=1}^{\infty} p_{24}^{(n)}=(1 / 2)(\infty)=\infty$, i.e. $\sum_{n=1}^{\infty} p_{14}^{(n)}=$ ∞.
3. For each of the following sets of conditions, either provide (with explanation) an example of a state space S and Markov chain transition probabilities $\left\{p_{i j}\right\}_{i, j \in S}$ such that the conditions are satisfied, or prove that no such a Markov chain exists.
(a) [3] There is $k \in S$ having period 1 , and $\ell \in S$ having period 3 .

Solution. Yes, possible. For example, let $S=\{1,2,3,4\}$, with $p_{11}=p_{23}=p_{34}=p_{42}=1$, and $p_{i j}=0$ otherwise. Then state $k=1$ has period 1 since it returns to 1 immediately, but state $\ell=2$ has period 3 since it only returns in multiples of 3 steps (by $2 \rightarrow 3 \rightarrow 4 \rightarrow 2$). (Of course, this chain is not irreducible; for irreducible chains, all states have the same period by the Equal Periods Lemma.)
(b) [3] The chain is irreducible, and there are distinct states $i, j, k, \ell \in S$ such that $f_{i j}=1$, and $\sum_{n=1}^{\infty} p_{k \ell}^{(n)}<\infty$.
Solution. Yes, possible. For example, simple random walk with $p>1 / 2$ is irreducible, and as shown in class (using the Law of Large Numbers) it has $f_{i j}=1$ for all $i<j$ (e.g. $i=0$ and $j=5$), but it is transient so by the Transience Equivalences Theorem $\sum_{n=1}^{\infty} p_{k \ell}^{(n)}<\infty$ for all $k, \ell \in S$ (e.g. $k=2$ and $\ell=4$).
(c) [3] There are distinct states $i, j, k \in S$ with $f_{i j}=1 / 3, f_{j k}=1 / 4$, and $f_{i k}=1 / 20$.

Solution. No, not possible. One way to eventually get from i to k, is to first eventually get from i to j, and then eventually get from j to k. This means we must have $f_{i k} \geq f_{i j} f_{j k}=$ $(1 / 3)(1 / 4)=1 / 12>1 / 20$, so we cannot have $f_{i k}=1 / 20$.
4. [6] Prove the Equal Periods Lemma, i.e. prove that if $i \leftrightarrow j$, and t_{i} is the period of state i, and t_{j} is the period of state j, then $t_{i}=t_{j}$. [Note: You cannot use the Equal Periods Lemma or any later results from class to prove this, you have to prove it yourself.]
Solution. Since $i \leftrightarrow j$, we can find $r, s \in \mathbf{N}$ with $p_{i j}^{(r)}>0$ and $p_{j i}^{(s)}>0$. Then by Chapman-Kolmogorov, $p_{i i}^{(r+s)} \geq p_{i j}^{(r)} p_{j i}^{(s)}>0$, so t_{i} divides $r+s$. Also if $p_{j j}^{(n)}>0$, then $p_{i i}^{(r+n+s)} \geq p_{i j}^{(r)} p_{j j}^{(n)} p_{j i}^{(s)}>0$, so t_{i} divides $r+n+s$, so t_{i} divides n. Hence, t_{i} is a common divisor of $\left\{n \geq 1: p_{j j}^{(n)}>0\right\}$. Since t_{j} is the greatest such divisor, therefore $t_{j} \geq t_{i}$. Exchanging i and j shows that also $t_{i} \geq t_{j}$. Hence, $t_{i}=t_{j}$.

[END OF EXAMINATION; total points $=50$]

