STA447/2006 Midterm #1, February 7, 2019

(135 minutes; 4 questions; 3 pages; total points = 50)

[SOLUTIONS]

1. Consider a Markov chain with state space $S = \{1, 2, 3\}$, and transition probabilities $p_{12} = 1/2$, $p_{13} = 1/2$, $p_{21} = 1/3$, $p_{23} = 2/3$, and $p_{31} = 1$, otherwise $p_{ij} = 0$.

(a) [2] Compute $p_{11}^{(2)}$.

Solution. $p_{11}^{(2)} = \sum_{j \in S} p_{1j}p_{j1} = p_{11}p_{11} + p_{12}p_{21} + p_{13}p_{31} = (0)(0) + (1/2)(1/3) + (1/2)(1) = (1/6) + (1/2) = 4/6 = 2/3.$

(b) [5] Find a probability distribution π which is stationary for this chain.

Solution. We need $\pi P = \pi$, i.e. $\sum_{i \in S} \pi_i p_{ij} = \pi_j$ for all $j \in S$. When j = 1 this gives $\pi_2(1/3) + \pi_3(1) = \pi_1$, so $\pi_3 = \pi_1 - \pi_2(1/3)$. When j = 2 this gives $\pi_1(1/2) = \pi_2$, so $\pi_1 = 2\pi_2$. Combining the two equations, $\pi_3 = 2\pi_2 - \pi_2(1/3) = (5/3)\pi_2$. We need $\pi_1 + \pi_2 + \pi_3 = 1$, i.e. $2\pi_2 + \pi_2 + (5/3)\pi_2 = 1$, i.e. $(14/3)\pi_2 = 1$. So, $\pi_2 = 3/14$. Then $\pi_1 = 2\pi_2 = 6/14 = 3/7$, and $\pi_3 = (5/3)\pi_2 = (5/3)(3/14) = 5/14$. As a check, when j = 3 we need $\pi_1(1/2) + \pi_2(2/3) = \pi_3$, i.e. (3/7)(1/2) + (3/14)(2/3) = (5/14), i.e. (3/14) + (2/14) = (5/14), which also holds. So, the stationary distribution is $\pi = (3/7, 3/14, 5/14)$.

(c) [3] Determine if the chain is reversible with respect to π .

Solution. No, it is not, since e.g. $\pi_1 p_{13} = (3/7)(1/2) = 3/14$, while $\pi_3 p_{31} = (5/14)(1) = 5/14$, so $\pi_i p_{ij} \neq \pi_j p_{ji}$ in this case.

(d) [6] Determine (with explanation) which of the following statements are true and which are false: (i) $\lim_{n\to\infty} p_{13}^{(n)} = \pi_3$. (ii) $\lim_{n\to\infty} \frac{1}{2} [p_{13}^{(n)} + p_{13}^{(n+1)}] = \pi_3$. (iii) $\lim_{n\to\infty} \frac{1}{n} \sum_{\ell=1}^n p_{13}^{(\ell)} = \pi_3$.

Solution. Here π is stationary by part (b), and the chain is irreducible since e.g. it can go $1 \to 2 \to 3 \to 1$, and the chain is aperiodic since e.g. it can get from 1 to 1 in two steps $(1 \to 2 \to 1)$ or three steps $(1 \to 2 \to 3 \to 1)$ and gcd(2,3) = 1. Hence, by the Markov chain Convergence Theorem, $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j$ for all $i, j \in S$, so (i) holds. Then $\lim_{n\to\infty} \frac{1}{2}[p_{13}^{(n)} + p_{13}^{(n+1)}] = \frac{1}{2}[\lim_{n\to\infty} p_{13}^{(n)} + \lim_{n\to\infty} p_{13}^{(n+1)}] = \frac{1}{2}[\pi_3 + \pi_3] = \pi_3$, so (ii) holds. And also, by Average Probability Convergence (or the theory of Cesàro sums), $\lim_{n\to\infty} \frac{1}{n} \sum_{\ell=1}^{n} p_{13}^{(\ell)} = \pi_3$, so (iii) also holds. In summary, all three statements are true.

(e) [3] Determine (with explanation) whether or not $\sum_{n=1}^{\infty} p_{13}^{(n)} = \infty$.

Solution. Yes it does. The chain is irreducible since e.g. it can go $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$. And |S| = 3 which is finite. So, by the Finite Space Theorem, $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$ for all i and j, including when i = 1 and j = 3.

2. Consider a Markov chain with state space $S = \{1, 2, 3, 4\}$ and transition matrix:

$$P = \begin{pmatrix} 1/4 & 1/2 & 1/8 & 1/8 \\ 0 & 1/3 & 0 & 2/3 \\ 0 & 0 & 1 & 0 \\ 0 & 4/5 & 0 & 1/5 \end{pmatrix}$$

(a) [4] Specify (with explanation) which states are recurrent, and which are transient.

Solution. State 1 is transient, since from 1 with probability 3/4 it leaves 1 immediately and never returns, so $f_{11} = 1/4 < 1$. State 3 is recurrent, since from 3 it always stays at 3, so $f_{33} = 1$. States 2 and 4 are recurrent, since $C = \{2, 4\}$ is a closed finite subset on which the chain is irreducible, so $f_{ij} = 1$ for all $i, j \in C$, so $f_{22} = f_{44} = 1$. Alternatively, use geometric series: $f_{22} = (1/3) + (2/3)(4/5) + (2/3)(1/5)(4/5) + (2/3)(1/5)^2(4/5) + ... =$ (1/3) + (2/3)(4/5)/[1 - (1/5)] = (1/3) + (2/3)(4/5)/(4/5) = (1/3) + (2/3) = 1, and similarly $f_{44} = (1/5) + (4/5)(2/3) + (4/5)(1/3)(2/3) + (4/5)(1/3)^2(2/3) + ... = (1/5) + (4/5)(2/3)/[1 - (1/3)] = (1/5) + (4/5)(2/3)/(2/3) = (1/5) + (4/5) = 1$.

(b) [3] Compute f_{24} .

Solution. Again, $C = \{2, 4\}$ is a closed finite subset on which the chain is irreducible, so $f_{ij} = 1$ for all $i, j \in C$, so $f_{24} = 1$. Alternatively, use a geometric series: $f_{24} = (2/3) + (1/3)(2/3) + (1/3)^2(2/3) + \ldots = (2/3)/[1 - (1/3)] = (2/3)/(2/3) = 1$.

(c) [3] Compute f_{14} .

Solution. When the chain leaves state 1, if it jumps to 3 then it will never hit 4, or if it jumps to 4 then it will of course hit state 4, or if it jumps to 2 then it will eventually hit state 4 since $f_{24} = 1$ from the previous part. So, f_{14} is the probability that the chain jumps to 2 or 4 [probability 5/8] when it leaves 1 [probability 3/4], i.e. $f_{14} = \mathbf{P}_1(X_1 = 2 \text{ or } 4 | X_1 \neq 1) = [(1/2) + 1/8)]/(3/4) = (5/8)/(3/4) = 5/6$. Alternatively, use geometric series: $f_{14} = \mathbf{P}_1(\text{eventually hit 2 or } 4) = (5/8) + (1/4)(5/8) + (1/4)^2(5/8) + \ldots = (5/8)/[1 - (1/4)] = (5/8)/(3/4) = 5/6$.

(d) [3] Determine whether or not $\sum_{n=1}^{\infty} p_{24}^{(n)} = \infty$.

Solution. Yes. Again, $C = \{2, 4\}$ is a closed finite subset on which the chain is irreducible, so $\sum_{n=1}^{\infty} p_{ij} = \infty$ for all $i, j \in C$, so yes $\sum_{n=1}^{\infty} p_{24} = \infty$.

(e) [3] Determine whether or not $\sum_{n=1}^{\infty} p_{14}^{(n)} = \infty$.

Solution. Yes. For example, note that by Chapman-Kolmogorov, $p_{14}^{(n+1)} \ge p_{12}p_{24}^{(n)} = (1/2)p_{24}^{(n)}$. So, $\sum_{n=1}^{\infty} p_{14}^{(n)} \ge \sum_{n=1}^{\infty} p_{14}^{(n+1)} \ge (1/2)\sum_{n=1}^{\infty} p_{24}^{(n)} = (1/2)(\infty) = \infty$, i.e. $\sum_{n=1}^{\infty} p_{14}^{(n)} = \infty$.

3. For each of the following sets of conditions, either provide (with explanation) an example of a state space S and Markov chain transition probabilities $\{p_{ij}\}_{i,j\in S}$ such that the conditions are satisfied, or prove that no such a Markov chain exists.

(a) [3] There is $k \in S$ having period 1, and $\ell \in S$ having period 3.

Solution. Yes, possible. For example, let $S = \{1, 2, 3, 4\}$, with $p_{11} = p_{23} = p_{34} = p_{42} = 1$, and $p_{ij} = 0$ otherwise. Then state k = 1 has period 1 since it returns to 1 immediately, but state $\ell = 2$ has period 3 since it only returns in multiples of 3 steps (by $2 \rightarrow 3 \rightarrow 4 \rightarrow 2$). (Of course, this chain is not <u>irreducible</u>; for irreducible chains, all states have the same period by the Equal Periods Lemma.)

(b) [3] The chain is irreducible, and there are distinct states $i, j, k, \ell \in S$ such that $f_{ij} = 1$, and $\sum_{n=1}^{\infty} p_{k\ell}^{(n)} < \infty$.

Solution. Yes, possible. For example, simple random walk with p > 1/2 is irreducible, and as shown in class (using the Law of Large Numbers) it has $f_{ij} = 1$ for all i < j (e.g. i = 0 and j = 5), but it is transient so by the Transience Equivalences Theorem $\sum_{n=1}^{\infty} p_{k\ell}^{(n)} < \infty$ for all $k, \ell \in S$ (e.g. k = 2 and $\ell = 4$).

(c) [3] There are distinct states $i, j, k \in S$ with $f_{ij} = 1/3$, $f_{jk} = 1/4$, and $f_{ik} = 1/20$.

Solution. No, not possible. One way to eventually get from *i* to *k*, is to first eventually get from *i* to *j*, and then eventually get from *j* to *k*. This means we must have $f_{ik} \ge f_{ij} f_{jk} = (1/3)(1/4) = 1/12 > 1/20$, so we cannot have $f_{ik} = 1/20$.

4. [6] Prove the Equal Periods Lemma, i.e. prove that if $i \leftrightarrow j$, and t_i is the period of state *i*, and t_j is the period of state *j*, then $t_i = t_j$. [Note: You cannot <u>use</u> the Equal Periods Lemma or any later results from class to prove this, you have to prove it yourself.]

Solution. Since $i \leftrightarrow j$, we can find $r, s \in \mathbf{N}$ with $p_{ij}^{(r)} > 0$ and $p_{ji}^{(s)} > 0$. Then by Chapman-Kolmogorov, $p_{ii}^{(r+s)} \geq p_{ij}^{(r)}p_{ji}^{(s)} > 0$, so t_i divides r + s. Also if $p_{jj}^{(n)} > 0$, then $p_{ii}^{(r+n+s)} \geq p_{ij}^{(r)}p_{jj}^{(s)} > 0$, so t_i divides r + n + s, so t_i divides n. Hence, t_i is a common divisor of $\{n \geq 1 : p_{jj}^{(n)} > 0\}$. Since t_j is the greatest such divisor, therefore $t_j \geq t_i$. Exchanging i and j shows that also $t_i \geq t_j$. Hence, $t_i = t_j$.

[END OF EXAMINATION; total points = 50]