
STA4502: Topics in Stochastic Processes Winter 2018

Lecture 2: Minorization Condition — March 7, 2018

Lecturer: Jeffrey Rosenthal Scribe: Louis Bélisle

4 Recap of previous lecture

A Markov Chain is a sequence {Xk} in a space X , transition probability P , initial distribution
ν = µ0, where the k-th step is distributed following µk = L(Xk). It may have a stationary
distribution π such that πP = π.

Theorem 16. If the chain is irreducible and aperiodic for π-a.e. x = X0, then ‖µk − π‖TV → 0

Remark 17. It is possible to show that the Total Variation function is non-increasing. Start by
noticing that P is a weak contraction operator. In “hand-wavy” form,

|P | < 1⇒ ‖µk+1 − π‖ = ‖(µk − π)P‖ ≤ ‖µk − π‖ · ‖P‖

Proposition 18 (Roberts and Rosenthal, 2004). 1. ‖ν1(.)−ν2(.)‖ = supf :X→[0,1] |
∫
fdν1−

∫
fdν2|

2. ‖ν1(.)− ν2(.)‖ = 1
b−a supf :X→[a,b] |

∫
fdν1 −

∫
fdν2| for any a < b and in particular

‖ν1(.)− ν2(.)‖ = 1
2 supf :X→[−1,1] |

∫
fdν1 −

∫
fdν2|

3. If π is stationary for a Markov chain kernel P , then ‖Pn(x, .)− π(.)‖ is non-increasing in n,
i.e., ‖Pn(x, .)− π(.)‖ ≤ ‖Pn−1(x, .)− π(.)‖ for n ∈ N

4. More generally, letteing (νiP )(A) =
∫
νi(dx)P (x,A), we always have ‖(ν1P )(.)− (ν2P )(.)‖ ≤

‖ν1(.)− ν2(.)‖.

5. Let t(n) = 2 supx∈X ‖Pn(x, .)−π(.)‖, where π(.) is stationary. the t is submultiplicative, i.e.,
t(m+ n) ≤ t(m)t(n) for n,m ∈ N.

6. if µ(.) and ν(.) have densities g and h, respectively, with respect to some σ-finite measure
ρ(.) and M = max(g, h) and m = min(g, h), then

‖µ(.)− ν(.)‖ =
1

2

∫
X

(M −m)dρ = 1−
∫
X
mdρ

7. Given probability measures µ(.) and ν(.), there are jointly defined random variables X and
Y such that X ∼ µ(.) and Y ∼ ν(.) and P [X = Y ] = 1− ‖µ(.)− ν(.)‖.

Proof. Ref: Roberts and Rosenthal, 2004. General State Space Markov Chains and MCMC Algo-
rithms.

Then we saw the coupling inequality and introduced the purpose of this course: studying the speed
of convergence of a Markov Chain. This means:

For any ε > 0, say ε = 0.01, find k∗ such that ‖µk − π‖TV ≤ ε.
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4.1 Challenge Solution

Let X = {1, 2, 3, 4, 5} and P (x, ·) follow a single-step random walk with holding, referring back to
challenge 15 which stems from example 12. We know it has a stationary distribution π = Unif(X ).
Using the coupling inequality,

‖µk − π‖ ≤ P (Xk 6= Yk)

≤
(

7

8

)bk/4c
< 0.01 if k ≥ 140

This value of k gives a number of steps in the chain that will guaranty that the result is within a
“reasonable” distance of its stationary distribution. We can find tighter bounds for k∗, the tightest
exposed in class having been found by numerical exponentiation of P to yield a k∗ = 39. Next, we
will present different ways to get bounds on k∗.

5 Minorization Condition

Goal 19. The goal is to find more efficient ways of finding the speed of convergence of a Markov
chain, other than trial and error. Using the Minorization Condition is similar in a way as thinking
about coupling.

Condition 20 (Rosenthal,1995). A Markov chain with transition kernel P (x,dy) on a state space
X is said to satisfy a minorization condition if there is a probability measure ρ(·) on X , a positive
integer k0, and ε > 0, such that

P k0(x,A) ≥ ερ(A), ∀x ∈ X ,

for all measurable subsets A ⊆ X .

The condition requires every state in the state space to be within reach of any other state. We
can then minorize the transition probability with a density ρ(·) scaled by a parameter ε. This
is equivalent to finding a sliver of a probability distribution where all the transition probabilities
“overlap” with each other (see Figure 1 for illustration). This can fail because we may not have an
overlap in common for all possible values of x ∈ X (see Observation 24).

Remark 21. Why is this similar to coupling? Because coupling is trying to make two Markov
chains become equal, while the minorization condition is showing us how this can be done.

Remark 22. The overlap suggests how to create the joint distribution. We know that the marginals
need to satisfy the Markov Chain conditions, but the joint distribution can be specified to fit our
needs.
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Proposition 23 (Coupling under Minorization Condition). Given Xn−1 = x and Yn−1 = y,

if x 6= y,


With probability = ε, choose z ∼ ρ(·), and set Xn = Yn = z

With probability = (1− ε), choose

{
Xn ∼ 1

1−ε(P (x, ·)− ερ(·))
Yn ∼ 1

1−ε(P (y, ·)− ερ(·))
otherwise, if x = y, leave them together and choose Xn = Yn ∼ P (x, ·)

For a matter of convenience, in the case of x 6= y where we choose Xn and Yn separately (i.e. not set-
ting them equal to z) we often take the two distributions ofXn and Yn to be conditionally independent
from each other. This completely defines the joint distribution of the two Markov processes.

Therefore, the distribution of Xn becomes ερ(·)+ 1
1−ε(P (x, ·)−ερ(·)). Similarly for Yn which implies

Pr(Y = X) ≥ ε

For this coupling, P (“becoming equal at step n”) ≥ ε, i.e., the probability of becoming equal at
step n is larger or equal to ε, therefore,

‖µk − π‖ ≤ P (Xk 6= Yk) ≤ (1− ε)k

If the minorization condition is satisfied, then the above inequality would allow us to find a k∗ that
is indicative of the speed of convergence.

Observation 24. It is possible to have a Markov chain where not all states are reachable within
one step of any other state (think of our example 12). However, with a Markov chain that we know
converges to a stationary distribution, it is possible to create an analogous chain that consists of
a small power of the transition kernel P that makes all states reachable within one “step” of this
power.

This means, we can find a k0 such that, if

P k0(x, ·) ≥ ερ(x, ·), ∀x ∈ X ,

then
‖P k0(x, ·)− π‖ ≤ ‖(P k0)bk/k0c(x, ·)− π‖ ≤ (1− ε)bk/k0c

Example 25. For our example 12 from Lecture 1, we do not immediately satisfy the minorization
condition because not all states are reachable from a particular starting point. However, within
4 steps, we have a positive probability to reach any point for every starting state. So we can use
P 4(x, ·) as our “chain” that satisfies the minorization condition. Within 4 steps, we have at least a
probability 1/44 = 1/16 of reaching any other state. We can thus choose ε = 1/16. Then to choose
a distribution ρ(·), we have many options:

1. If we decide to take ρ(·) = δ3(·), i.e., a point mass at state 3, then

P 4(x, 3) ≥ 1

16
δ3(·), ∀x⇒ ‖P k0(x, ·)− π‖ ≤

(
15

16

)bk/4c
≤ 0.01⇒ k∗ = 288

2. If we decide to take ρ(·) = Unif(X ), i.e., the discrete uniform distribution over X , then

P 4(x, ·) ≥ 5

16
Unif(X ), ∀x⇒ ‖P k0(x, ·)− π‖ ≤

(
11

16

)bk/4c
≤ 0.01⇒ k∗ = 52
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Challenge 26. Take a new MC similar to example 12, i.e., single-step random walk over X =
{1, 2, . . . , N}, for N ∈ N but where the transition probabilities are

Pr(Go Left) =1/3

Pr(Stay Put) =1/3

Pr(Go Right) =1/3

1 2 · · · N-1 N

1
3

1
3

1
3

2
3

2
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

Then

1. Find k∗ with N = 5

2. What is k∗ with N →∞ (gets arbitrarily large)

5.1 Method to find minorization components

Optimally, we would take
ερ(y) = min

x∈X
P (x, y), ∀y ∈ X ,

which leads us to choose a particular ε and create the ρ(·) such that it is a probability distribution
that fits the criteria for the minorization condition. One way to build such elements is the following:

Discrete:

{
ε =

∑
y minx P (x, y)

ρ(y) = minx P (x,y)∑
y minx P (x,y)

Continuous:

ε =
∫
y infx P (x, dy)

ρ(y) = infx P (x,dy)∫
y infx P (x,dy)

5.2 Continuous state space: an application of the minorization condition

Example 27. Let X = [0, 2]. Let the transition probability from state x ∈ X to a subset A ⊆ X
be

P (x,A) = N(x, 1;A) + r(x)δx(A)

where N(x, 1;A) = Pr(z ∈ A) with z ∼ N(x, 1), and where r(x) = 1−N(x, 1;X ), the probability
that a draw from N(x, 1) falls outside X . (This corresponds to the Metropolis-Hastings algorithm
with π = Unif[0, 2].)
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Remark 28. This transition probability is reversible with respect to π = Unif[0, 2], i.e., if we start
in a neighbourhood of x, the probability of jumping in a neighbourhood of y is the same as if we
had started in neighbourhood of y and measured the probability of jumping in a neighbourhood of x.
∀x, y ∈ X ,

π(x)P (x, y) =π(y)P (y, x), (Discrete)

π(dx)P (x, dy) =π(dy)P (y, dx), (Continuous)

In this situation, we have special case where the Uniform distribution guarantees π(dx) = π(dy)
and the symmetry of the Normal distribution guarantees P (x,dy) = P (y,dx).

Figure 1: Illustration of the overlap required to satisfy the minorization condition

0 2

To be able to use a minorization argument, we must verify 2 things:

1. The Markov chain converges

(a) This chain is φ-irreducible under φ = Lebesgue|[0,2]
(b) It is aperiodic since N(·) covers all the domain [0, 2].

2. The minorization condition is satisfied

(a) we can find ε =
∫
y g(y)dy where g(y) ≤ f(x, y) ∀x, y.

Then, we will be able to find a value k∗ such that, ∀ k ≥ k∗, ‖µk − π‖TV < 0.01. To construct ε, it
helps to think of the “worst case” scenario for the location of x and Y . In this case, take X = 0
and Y = 2 (as represented in Figure 1). The shaded area represents ερ(·). Then,

∀x, y, P (x,dy) ≥min[P (0,dy), P (2,dy)]

⇒ ε =

∫
y

min[P (0, dy), P (2, dy)]

= (Φ(2)− Φ(1)) + (Φ(−1)− Φ(−2))

=2 (Φ(2)− Φ(1))

≥0.27

∴ ‖µk − π‖TV ≤(1− ε)k = (0.73)k

<0.01 if k ≥ 15
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So take ε = 0.23 and k∗ = 15. In this case, we do not need to know the exact form of ρ(·), but by
construction we know ρ(·) has density

f(y) =
min[N(0, 1; y), N(2, 1; y)]

2 (Φ(2)− Φ(1))
I{y∈X}.

6 Eigenvectors and eigenvalues: first concept

We know our distribution at step k is µk = µ0P
k with |X | = d. Suppose we coudl find λi, vi such

that viP = λivi for i = 0, 1, . . . , d− 1. If we represent µ0 as

µ0 = a0v0 + a1v1 + . . .+ ad−1vd−1,

then we could find values for λi’s such that

µk = µ0P
k = a0(λ0)

kv0 + a1(λ1)
kv1 + . . .+ ad−1(λd−1)

kvd−1.

where we would usually take λ0 = 1, v0 = π, a0 = 1 (by relabeling, since we know πP = π) and we
will have |λm| < 1 for m > 0, which will give us bounds on convergence.
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