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1 Introduction to Markov Chains

Before we define a Markov chain, we introduce the following notations and definitions.

Definition 1. We denote (X ,F) our (measurable) state space, equipped with appropriate σ-
algebra F . Here a state space is called discrete if the cardinality of X is finite or countable,
otherwise it’s called continuous.

Here’s a diagram with some examples

state space(X ,F)

discrete:

{
finite: e.g. X = {1, 2, 3, . . . , n},F = P(X ) (the power set)

countable: e.g. X = N = {0, 1, 2, . . .},F = P(X )

continuous: e.g. X = Rd,F = B(Rd) (the Borel sets).

Definition 2. P : X × F → [0, 1] is a transition probability if ∀x ∈ X , P (x, ·) : F → [0, 1] is a
probability measure on (X ,F).

Remark 3. Observe that for a discrete X , P (x, y) is well defined ∀x, y ∈ X , i.e. it’s the probability
of going from point x to point y. For a continuous X , we need to use measurable sets A ∈ F to
talk about transition probability P (x,A) from x to A.

Finally we can define a Markov chain.

Definition 4. We call a sequence of random variables {Xk}∞k=0 taking values in X a Markov
chain if P[Xk+1 ∈ A|Xk] = P (Xk, A),∀k ∈ N, A ∈ F .

At the same time, we would like to define the following distributions on X .

Definition 5. We call ν = L(X0) the initial disitribution, and denote µk = L(Xk). A distribu-
tion π is called a stationary distribution if π(A) =

∫
X P (x,A)dπ(x).

In other words, if the Markov chain starts in a stationary distribution (ν = π), it will remain in
stationarity (µk = π,∀k ∈ N).

The main goal of this course is study whether or not we have convergence of µk → π in some sense,
and if so quantify the “rates” of this convergence. To this end, we will introduce several defintions
and basic conditions to guarantee convergence.
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2 Convergence Conditions

We start with a couple of definitions.

Definition 6. A dicrete Markov chain is irreducible if

∀x, y ∈ X ,P[Xk = y eventually |X0 = x] > 0.

Equivalently, we can say ∃m ∈ N : Pm(x, y) > 0, where Pm(x, y) is the transition probability after
m steps.

In general, we say Markov chain is φ-irreducible if ∃ non-zero σ-finite measure φ on (X ,F) : ∀x ∈
X , A ∈ F with φ(A) > 0, we have that P[Xk ∈ A eventually |X0 = x] > 0.

Remark 7. The general φ-irreducibility is not equivalent to the discrete irreducibility. Consider
for example φ that concentrates only on a single point x ∈ X , then φ-irreducibility only requires
∀y ∈ X ,∃m ∈ N : Pm(y, x) > 0.

Definition 8. For a discrete irreducible Markov chain, a point x ∈ X is said to be aperiodic if
gcd({n, Pn(x, x) > 0}) = 1. The Markov chain is aperiodic if every point is aperiodic.

A general Markov chain with stationary distribution π is aperiodic if there does not exist d ≥ 2

and a partition of size d + 1 such that X =
(⊔d

i=1Xi
)⊔

N , where
⊔

denotes disjoint union, N is

a π-null set, and for π-a.e. x ∈ Xi, P (x,Xi+1) = 1, except for π-a.e. x ∈ Xd, P (x,X1) = 1.

At this point, we can state our first theorem, the conditions to guarantee convergence.

Theorem 9. If a Markov chain is irreducible (or φ-irreducible for the general case), aperiodic, and
have a stationary distribution π, then we have for a discrete Markov chain

∀v initial distribution,∀y ∈ X , lim
k→∞

µk(y) = π(y),

or for a general Markov chain

for π − a.e. x ∈ X , lim
k→∞

sup
A∈F

∣∣∣P k(x,A)− π(A)
∣∣∣ = 0.

Remark 10. For the general chain, this type of convergence is stronger than the typical weak
convergence (in distribution), it is known as convergence in total variation. The name refers
to the total variation distance defined by

TV(µk, π) := sup
A∈F
|µk(A)− π(A)| .

In the discrete case, we also have the following identity

TV(µk, π) =
1

2

∑
y∈X
|µk(y)− π(y)| =

∑
y∈X :µk(y)>π(y)

|µk(y)− π(y)|.

Therefore we have that for the discrete case, weak convergence implies convergence in total varia-
tion.

However, in general this implication is false. Consider the following counter example (by Jeffrey
Negrea). Let X = [0, 1], π = δ0, a point mass at x = 0. Define the transition probability as

P (x, x/2) = 1. Then ∀x ∈ X , ν = δx, we have µk
d−→ δ0. However the total variation distance is

always 1 as |π(0)− µk(0)| = 1, ∀k.
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Example 11. Let X = {1, 2, . . .}, π = δ1, P (1, 1) = 1. For n ≥ 2, let P (n, n + 1) = 1 − 1/n2,
P (n, 1) = 1/n2. See diagram below for a few sample points.
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Observe in this case, the chain is not irreducible in the discrete definition, however it is φ-irreducible
when φ = δ1. Similarly, this Markov chain is aperiodic in the general sense, since the only possible
node to return to has a period of 1.

Here we can check for which x ∈ X we have convergence to stationary distribution.

x = 1 =⇒ µk = δ1 ∀k. 3

x ≥ 2, in this case we have that 1/n2 is summable, which implies
∏∞
n=1(1 − 1/n2) > 0. In other

words, there is a positve probability of Xk →∞. 7

This implies we have µk
TV−−→ π, but only for π-a.e. x ∈ X starting points, which is only x = 1.

Example 12. Let X = {1, 2, 3, 4, 5}, and define a symmetric random walk, i.e. P (x, x + 1) =
P (x, x−1) = 1/2, except at the ends, we have P (1, 1) = P (5, 5) = 1/2 instead. See diagram below.
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This chain is clearly irreducible. It is also aperiodic since for every path x → y, we can stop at 1
or 5 for one additional step, making the gcd 1.

The stationary distribution π is uniform since the chain is reversible, i.e. P (x, y) = P (y, x).

Since all the conditions are satisfied we have

lim
k→∞

P[Xk = x] = π(x) =
1

5
,∀x ∈ X .

Goal 13. Find k∗ ∈ N such that

sup
A∈F

∣∣∣P k∗(x,A)− π(A)
∣∣∣ < 0.01

This is called the quantitative rate of convergence. Here we remark that finding one particular
k∗ is already difficult, therefore we are less interested in find the minimal k∗.

To this goal, we will introduce the coupling technique.
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3 The Coupling Inequality

If X,Y are jointly defined random variables, then we can bound the total variation distance by the
following steps

‖L(X)− L(Y )‖TV = sup
A∈F
|P(X ∈ A)− P(Y ∈ A)|

partition each event . . . = sup
A∈F
|P(X ∈ A,X = Y ) + P(X ∈ A,X 6= Y )

− P(Y ∈ A,X = Y )− P(Y ∈ A,X 6= Y )|
{X ∈ A,X = Y } = {Y ∈ A,X = Y } =⇒ = sup

A∈F
|P(X ∈ A,X 6= Y )− P(Y ∈ A,X 6= Y )|

≤ P(X 6= Y ),

where a factor of 2 is not required in the last step since both probabilities are non-negative.

Example 14. (Apply to Markov Chains) Here we start with a Markov chain {Xk}∞k=0, and we
make a copy of it denoted {Yk}∞k=0, with the joint distribution specified later.

Usually (although not exclusively), we will let Y0 ∼ π, i.e. start in the stationary distribution,
therefore Yk ∼ π, i.e. remains in stationarity. This implies

‖µk − π‖TV = ‖L(Xk)− L(Yk)‖TV ≤ P(Xk 6= Yk).

Proof intuition: here we let Xk, Yk move together, i.e. if Xk+1 = Xk ± 1, then we also have
Yk+1 = Yk ± 1; while at the end points, one of the chains must remain in the same node, hence
reducing the “distance” by 1. Eventually, the two chains will “converge” to the same value.

Challenge 15. Use the coupling technique above to find k∗ such that

sup
A∈F

∣∣∣P k∗(x,A)− π(A)
∣∣∣ < 0.01
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