
STA447/2006 Midterm, February 8, 2018

(135 minutes; 5 questions; 3 pages; total points = 45)

[SOLUTIONS]
1. Consider a Markov chain with state space S = {1, 2, 3, 4}, and transition probabilities
p11 = p12 = 1/2, p21 = 1/3, p22 = 2/3, p32 = 1/7, p33 = 2/7, p34 = 4/7, p44 = 1.

(a) [2] Compute p
(2)
32 . (You do not need to simplify the final fraction.)

Solution. p
(2)
32 =

∑
k∈S p3kpk2 = p31p12 + p32p22 + p33p32 + p34p42 = (0)(1/2) + (1/7)(2/3) +

(2/7)(1/7) + (4/7)(0) = 2/21 + 2/49.

(b) [2] Determine whether or not
∑∞

n=1 p
(n)
12 =∞. [Hint: perhaps let C = {1, 2}.]

Solution. The subset C = {1, 2} is closed since pij = 0 for i ∈ C and j 6∈ C. Furthermore,
the Markov chain restricted to C is irreducible (since it’s possible to go 1→ 2→ 1), and C

is finite. Hence, by the Finite State Space Theorem, we must have
∑∞

n=1 p
(n)
12 =∞.

(c) [4] Compute (with explanation) f32.

Solution. Here f32 =
∑∞

n=1P3[first hit 2 at time n] =
∑∞

n=1(2/7)n−1(1/7) = (1/7)/(1 −
(2/7)) = (1/7)/(5/7) = 1/5. Or, alternatively, f32 = P3[hit 2 when we first leave 3] =
P3[hit 2 | leave 3] = (1/7)/((1/7) + (4/7)) = 1/5. Or, alternatively, by the F-Expansion,
f32 = p32 + p31 f12 + p33 f32 + p34 f42 = (1/7) + 0 + (2/7)f32 + 0, so (5/7)f32 = 1/7, so
f32 = (1/7)/(5/7) = 1/5.

2. For each of the following sets of conditions, either provide (with explanation) an
example of a state space S and Markov chain transition probabilities {pij}i,j∈S such that the
conditions are satisfied, or prove that no such a Markov chain exists.

(a) [3] The chain is irreducible, with period 3, and has a stationary distribution.

Solution. Possible. For example, let S = {1, 2, 3}, with p12 = p23 = p31 = 1 (and pij = 0
otherwise). Then the chain is irreducible (since it can get from 1→ 2→ 3→ 1), and periodic
with period 3 (since it only returns to each i in multiples of three steps). Furthermore the
chain is doubly stochastic, so if π1 = π2 = π3 = 1/3, then π is a stationarity distribution.

(b) [3] There is k ∈ S having period 2, and ` ∈ S having period 4.

Solution. Possible. For example, let S = {1, 2, 3, 4, 5, 6}, with p12 = p21 = 1, and with
p34 = p45 = p56 = p63 = 1. Then state k = 1 has period 2 since it only returns in multiples of
2 steps, and state ` = 3 has period 4 since it only returns in multiples of 4 steps. (Of course,
this chain is not irreducible; for irreducible chains, all states must have the same period.)
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(c) [3] The chain has a stationary distribution π, and 0 < pij < 1 for all i, j ∈ S, but the
chain is not reversible with respect to π.

Solution. Possible. For example, let S = {1, 2, 3}, with p12 = p23 = p31 = 1/3, and
p21 = p32 = p13 = 1/2, and p11 = p22 = p33 = 1/6. Then 0 < pij < 1 for all i, j ∈ S (yes,
even when i = j). Next, let π1 = π2 = π3 = 1/3, so π is a probability distribution on S.
Then π1p12 = (1/3)(1/3) 6= (1/3)(1/2) = π2p21, so the chain is not reversible with respect to
π. On the other hand, for any j ∈ S, we have

∑
i πipij = (1/3)(1/3 + 1/2 + 1/6) = 1/3 = πj.

(Or, alternatively,
∑

i pij = 1/3 + 1/2 + 1/6 = 1, so the chain is doubly stochastic.) Hence,
π is a stationary distribution.

(d) [3] The chain is irreducible, and there are distinct states i, j, k, ` ∈ S such that fij < 1,

and
∑∞

n=1 p
(n)
k` =∞.

Solution. Not possible. If the chain is irreducible, and
∑∞

n=1 p
(n)
k` =∞, then by the Stronger

Recurrence Theorem, we must have fij = 1 for all i and j.

(e) [3] The chain is irreducible, and there are are distinct states i, j, k ∈ S with pij > 0,

p
(2)
jk > 0, and p

(3)
ki > 0, and state i is periodic with period equal to an odd number.

Solution. Possible. For example, let S = {1, 2, 3, 4, 5, 6}, with p12 = p15 = 1/2, and
p23 = p34 = p45 = p56 = p61 = 1, with pij = 0 o.w. Let i = 1, and j = 2, and k = 4. Then

pij = p12 = 1/2 > 0, and p
(2)
jk = p23p34 = 1(1) = 1 > 0, and p

(3)
ki = p45p56p61 = 1(1)(1) =

1 > 0, but state i has period 3 (which is odd) since from i the chain can return to i in three
steps (1→ 5→ 6→ 1) or six steps (1→ 2→ 3→ 4→ 5→ 6→ 1), and gcd(3, 6) = 3.

(f) [3] There are distinct states i, j, k ∈ S with fij = 1/2, fjk = 1/3, and fik = 1/10.

Solution. Not possible. One way to eventually get from i to k, is to first eventually get
from i to j, and then eventually get from j to k. This means we must have fik ≥ fij fjk =
(1/2)(1/3) = 1/6, so we cannot have fik = 1/10.

3. Consider the Markov chain with state space S = {1, 2, 3}, and transition probabilities
p12 = p32 = 1, p21 = 1/4, and p23 = 3/4. Let π1 = 1/8, π2 = 1/2, and π3 = 3/8.

(a) [3] Verify that the chain is reversible with respect to π.

Solution. Here π1p12 = (1/8)(1) = (1/2)(1/4) = π2p21, and π1p13 = (1/8)(0) = (3/8)(0) =
π3p31, and π3p32 = (3/8)(1) = (1/2)(3/4) = π2p23, so πipij = πjpji for all i, j ∈ S, so the
chain is reversible with respect to π.

(b) [6] Determine (with explanation) which of the following statements are true and which

are false: (i) lim
n→∞

p
(n)
11 = 1/8. (ii) lim

n→∞
1
2
[p

(n)
11 + p

(n+1)
11 ] = 1/8. (iii) lim

n→∞
1
n

n∑
`=1

p
(`)
11 = 1/8.

Solution. Here π is stationary by part (a), and the chain is irreducible since it can go
1→ 2→ 3→ 2→ 1, but the chain has period 2 since it always moves from odd to even or
from even to odd. Hence, p

(n)
11 = 0 whenever n is odd, so we do not have lim

n→∞
p
(n)
11 = 1/8.
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But by the Periodic Convergence Theorem, we do still have lim
n→∞

1
2
[p

(n)
11 + p

(n+1)
11 ] = π1 = 1/8,

and by the Periodic Convergence Corollary we also have lim
n→∞

1
n

∑n
`=1 p

(`)
11 = π1 = 1/8. So, in

summary, (i) does not hold, but (ii) and (iii) do hold.

4. [5] Consider the undirected graph with vertex set V = {1, 2, 3, 4}, and an undirected
edge (of weight 1) between each of the following four pairs of vertices (and no other edges):
(1,2), (2,3), (3,4), (2,4). Let {pij}i,j∈V be the transition probabilities for random walk on

this graph. Compute (with full explanation) lim
n→∞

p
(n)
12 , or prove this limit does not exist.

Solution. The graph is connected (since we can get from 1 → 2 → 3 → 4 and back),
so the walk is irreducible. Also, the walk is aperiodic since e.g. we can get from 2 to 2
in 2 steps by 2 → 3 → 2, or in 3 steps by 2 → 3 → 4 → 2, and gcd(2, 3) = 1. Here
Z =

∑
u d(u) = 2|E| = 2(4) = 8 < ∞. Hence, as shown in class, if πu = d(u)/Z, then

the walk is reversible with respect to π, so π is a stationary distribution. Also d(2) = 3,
because there are three edges from the vertex 2. Hence, by the Graph Convergence Theorem,
limn→∞ p

(n)
12 = π2 = d(2)/Z = 3/8.

5. [5] Let {pij} be the transition probabilities for an irreducible Markov chain with state

space S. Let i, j, k, ` ∈ S. Suppose limn→∞ p
(n)
k` = 0. Prove that limn→∞ p

(n)
ij = 0.

[Hint: since k → i and j → `, there are times r, s ∈ N with p
(r)
ki > 0 and p

(s)
j` > 0.]

Solution. Find r, s ∈ N with p
(r)
ki > 0 and p

(s)
j` > 0. Then by Chapman-Kolmogorov,

p
(r+n+s)
k` ≥ p

(r)
ki p

(n)
ij p

(s)
j` , so p

(n)
ij ≤ p

(r+n+s)
k`

/
(p

(r)
ki p

(s)
j` ). But lim

n→∞

[
p
(r+n+s)
k`

/
(p

(r)
ki p

(s)
j` )

]
= 0. Also

p
(n)
ij ≥ 0. So, p

(n)
ij is “sandwiched” between 0 and a sequence converging to 0. Hence, by the

Sandwich Theorem (or, Squeeze Theorem) from Calculus, we must have limn→∞ p
(n)
ij = 0.

(Or, less formally but not quite correct, since p
(n)
ij is non-negative and is ≤ something going

to zero, therefore p
(n)
ij must also go to zero.)
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