STA447/2006 Midterm, February 8, 2018

(135 minutes; 5 questions; 3 pages; total points $=45$)
[SOLUTIONS]

1. Consider a Markov chain with state space $S=\{1,2,3,4\}$, and transition probabilities $p_{11}=p_{12}=1 / 2, p_{21}=1 / 3, p_{22}=2 / 3, p_{32}=1 / 7, p_{33}=2 / 7, p_{34}=4 / 7, p_{44}=1$.
(a) [2] Compute $p_{32}^{(2)}$. (You do not need to simplify the final fraction.)

Solution. $p_{32}^{(2)}=\sum_{k \in S} p_{3 k} p_{k 2}=p_{31} p_{12}+p_{32} p_{22}+p_{33} p_{32}+p_{34} p_{42}=(0)(1 / 2)+(1 / 7)(2 / 3)+$ $(2 / 7)(1 / 7)+(4 / 7)(0)=2 / 21+2 / 49$.
(b) [2] Determine whether or not $\sum_{n=1}^{\infty} p_{12}^{(n)}=\infty$. [Hint: perhaps let $C=\{1,2\}$.]

Solution. The subset $C=\{1,2\}$ is closed since $p_{i j}=0$ for $i \in C$ and $j \notin C$. Furthermore, the Markov chain restricted to C is irreducible (since it's possible to go $1 \rightarrow 2 \rightarrow 1$), and C is finite. Hence, by the Finite State Space Theorem, we must have $\sum_{n=1}^{\infty} p_{12}^{(n)}=\infty$.
(c) [4] Compute (with explanation) f_{32}.

Solution. Here $f_{32}=\sum_{n=1}^{\infty} \mathbf{P}_{3}[$ first hit 2 at time $n]=\sum_{n=1}^{\infty}(2 / 7)^{n-1}(1 / 7)=(1 / 7) /(1-$ $(2 / 7))=(1 / 7) /(5 / 7)=1 / 5$. Or, alternatively, $f_{32}=\mathbf{P}_{3}[$ hit 2 when we first leave 3$]=$ $\mathbf{P}_{3}[$ hit $2 \mid$ leave 3] $=(1 / 7) /((1 / 7)+(4 / 7))=1 / 5$. Or, alternatively, by the F-Expansion, $f_{32}=p_{32}+p_{31} f_{12}+p_{33} f_{32}+p_{34} f_{42}=(1 / 7)+0+(2 / 7) f_{32}+0$, so $(5 / 7) f_{32}=1 / 7$, so $f_{32}=(1 / 7) /(5 / 7)=1 / 5$.
2. For each of the following sets of conditions, either provide (with explanation) an example of a state space S and Markov chain transition probabilities $\left\{p_{i j}\right\}_{i, j \in S}$ such that the conditions are satisfied, or prove that no such a Markov chain exists.
(a) [3] The chain is irreducible, with period 3, and has a stationary distribution.

Solution. Possible. For example, let $S=\{1,2,3\}$, with $p_{12}=p_{23}=p_{31}=1$ (and $p_{i j}=0$ otherwise). Then the chain is irreducible (since it can get from $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$), and periodic with period 3 (since it only returns to each i in multiples of three steps). Furthermore the chain is doubly stochastic, so if $\pi_{1}=\pi_{2}=\pi_{3}=1 / 3$, then π is a stationarity distribution.
(b) [3] There is $k \in S$ having period 2 , and $\ell \in S$ having period 4 .

Solution. Possible. For example, let $S=\{1,2,3,4,5,6\}$, with $p_{12}=p_{21}=1$, and with $p_{34}=p_{45}=p_{56}=p_{63}=1$. Then state $k=1$ has period 2 since it only returns in multiples of 2 steps, and state $\ell=3$ has period 4 since it only returns in multiples of 4 steps. (Of course, this chain is not irreducible; for irreducible chains, all states must have the same period.)
(c) [3] The chain has a stationary distribution π, and $0<p_{i j}<1$ for all $i, j \in S$, but the chain is not reversible with respect to π.

Solution. Possible. For example, let $S=\{1,2,3\}$, with $p_{12}=p_{23}=p_{31}=1 / 3$, and $p_{21}=p_{32}=p_{13}=1 / 2$, and $p_{11}=p_{22}=p_{33}=1 / 6$. Then $0<p_{i j}<1$ for all $i, j \in S$ (yes, even when $i=j$). Next, let $\pi_{1}=\pi_{2}=\pi_{3}=1 / 3$, so π is a probability distribution on S. Then $\pi_{1} p_{12}=(1 / 3)(1 / 3) \neq(1 / 3)(1 / 2)=\pi_{2} p_{21}$, so the chain is not reversible with respect to π. On the other hand, for any $j \in S$, we have $\sum_{i} \pi_{i} p_{i j}=(1 / 3)(1 / 3+1 / 2+1 / 6)=1 / 3=\pi_{j}$. (Or, alternatively, $\sum_{i} p_{i j}=1 / 3+1 / 2+1 / 6=1$, so the chain is doubly stochastic.) Hence, π is a stationary distribution.
(d) [3] The chain is irreducible, and there are distinct states $i, j, k, \ell \in S$ such that $f_{i j}<1$, and $\sum_{n=1}^{\infty} p_{k \ell}^{(n)}=\infty$.
Solution. Not possible. If the chain is irreducible, and $\sum_{n=1}^{\infty} p_{k \ell}^{(n)}=\infty$, then by the Stronger Recurrence Theorem, we must have $f_{i j}=1$ for all i and j.
(e) [3] The chain is irreducible, and there are are distinct states $i, j, k \in S$ with $p_{i j}>0$, $p_{j k}^{(2)}>0$, and $p_{k i}^{(3)}>0$, and state i is periodic with period equal to an odd number.
Solution. Possible. For example, let $S=\{1,2,3,4,5,6\}$, with $p_{12}=p_{15}=1 / 2$, and $p_{23}=p_{34}=p_{45}=p_{56}=p_{61}=1$, with $p_{i j}=0$ o.w. Let $i=1$, and $j=2$, and $k=4$. Then $p_{i j}=p_{12}=1 / 2>0$, and $p_{j k}^{(2)}=p_{23} p_{34}=1(1)=1>0$, and $p_{k i}^{(3)}=p_{45} p_{56} p_{61}=1(1)(1)=$ $1>0$, but state i has period 3 (which is odd) since from i the chain can return to i in three steps $(1 \rightarrow 5 \rightarrow 6 \rightarrow 1)$ or six steps $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 1)$, and $\operatorname{gcd}(3,6)=3$.
(f) [3] There are distinct states $i, j, k \in S$ with $f_{i j}=1 / 2, f_{j k}=1 / 3$, and $f_{i k}=1 / 10$.

Solution. Not possible. One way to eventually get from i to k, is to first eventually get from i to j, and then eventually get from j to k. This means we must have $f_{i k} \geq f_{i j} f_{j k}=$ $(1 / 2)(1 / 3)=1 / 6$, so we cannot have $f_{i k}=1 / 10$.
3. Consider the Markov chain with state space $S=\{1,2,3\}$, and transition probabilities $p_{12}=p_{32}=1, p_{21}=1 / 4$, and $p_{23}=3 / 4$. Let $\pi_{1}=1 / 8, \pi_{2}=1 / 2$, and $\pi_{3}=3 / 8$.
(a) [3] Verify that the chain is reversible with respect to π.

Solution. Here $\pi_{1} p_{12}=(1 / 8)(1)=(1 / 2)(1 / 4)=\pi_{2} p_{21}$, and $\pi_{1} p_{13}=(1 / 8)(0)=(3 / 8)(0)=$ $\pi_{3} p_{31}$, and $\pi_{3} p_{32}=(3 / 8)(1)=(1 / 2)(3 / 4)=\pi_{2} p_{23}$, so $\pi_{i} p_{i j}=\pi_{j} p_{j i}$ for all $i, j \in S$, so the chain is reversible with respect to π.
(b) [6] Determine (with explanation) which of the following statements are true and which are false: (i) $\lim _{n \rightarrow \infty} p_{11}^{(n)}=1 / 8$. (ii) $\lim _{n \rightarrow \infty} \frac{1}{2}\left[p_{11}^{(n)}+p_{11}^{(n+1)}\right]=1 / 8$. (iii) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\ell=1}^{n} p_{11}^{(\ell)}=1 / 8$.

Solution. Here π is stationary by part (a), and the chain is irreducible since it can go $1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 1$, but the chain has period 2 since it always moves from odd to even or from even to odd. Hence, $p_{11}^{(n)}=0$ whenever n is odd, so we do not have $\lim _{n \rightarrow \infty} p_{11}^{(n)}=1 / 8$.

But by the Periodic Convergence Theorem, we do still have $\lim _{n \rightarrow \infty} \frac{1}{2}\left[p_{11}^{(n)}+p_{11}^{(n+1)}\right]=\pi_{1}=1 / 8$, and by the Periodic Convergence Corollary we also have $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\ell=1}^{n} p_{11}^{(\ell)}=\pi_{1}=1 / 8$. So, in summary, (i) does not hold, but (ii) and (iii) do hold.
4. [5] Consider the undirected graph with vertex set $V=\{1,2,3,4\}$, and an undirected edge (of weight 1) between each of the following four pairs of vertices (and no other edges): $(1,2),(2,3),(3,4),(2,4)$. Let $\left\{p_{i j}\right\}_{i, j \in V}$ be the transition probabilities for random walk on this graph. Compute (with full explanation) $\lim _{n \rightarrow \infty} p_{12}^{(n)}$, or prove this limit does not exist.

Solution. The graph is connected (since we can get from $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ and back), so the walk is irreducible. Also, the walk is aperiodic since e.g. we can get from 2 to 2 in 2 steps by $2 \rightarrow 3 \rightarrow 2$, or in 3 steps by $2 \rightarrow 3 \rightarrow 4 \rightarrow 2$, and $\operatorname{gcd}(2,3)=1$. Here $Z=\sum_{u} d(u)=2|E|=2(4)=8<\infty$. Hence, as shown in class, if $\pi_{u}=d(u) / Z$, then the walk is reversible with respect to π, so π is a stationary distribution. Also $d(2)=3$, because there are three edges from the vertex 2. Hence, by the Graph Convergence Theorem, $\lim _{n \rightarrow \infty} p_{12}^{(n)}=\pi_{2}=d(2) / Z=3 / 8$.
5. [5] Let $\left\{p_{i j}\right\}$ be the transition probabilities for an irreducible Markov chain with state space S. Let $i, j, k, \ell \in S$. Suppose $\lim _{n \rightarrow \infty} p_{k \ell}^{(n)}=0$. Prove that $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$. [Hint: since $k \rightarrow i$ and $j \rightarrow \ell$, there are times $r, s \in \mathbf{N}$ with $p_{k i}^{(r)}>0$ and $p_{j \ell}^{(s)}>0$.]
Solution. Find $r, s \in \mathbf{N}$ with $p_{k i}^{(r)}>0$ and $p_{j \ell}^{(s)}>0$. Then by Chapman-Kolmogorov, $p_{k \ell}^{(r+n+s)} \geq p_{k i}^{(r)} p_{i j}^{(n)} p_{j \ell}^{(s)}$, so $p_{i j}^{(n)} \leq p_{k \ell}^{(r+n+s)} /\left(p_{k i}^{(r)} p_{j \ell}^{(s)}\right)$. But $\lim _{n \rightarrow \infty}\left[p_{k \ell}^{(r+n+s)} /\left(p_{k i}^{(r)} p_{j \ell}^{(s)}\right)\right]=0$. Also $p_{i j}^{(n)} \geq 0$. So, $p_{i j}^{(n)}$ is "sandwiched" between 0 and a sequence converging to 0 . Hence, by the Sandwich Theorem (or, Squeeze Theorem) from Calculus, we must have $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$. (Or, less formally but not quite correct, since $p_{i j}^{(n)}$ is non-negative and is \leq something going to zero, therefore $p_{i j}^{(n)}$ must also go to zero.)

[END OF EXAMINATION: total points $=45$]

