STA447/2006 Midterm, February 16, 2017

(2 hours; 5 questions; 6 pages; total points $=52$)

LAST NAME:

\qquad GIVEN NAMES: \qquad STUDENT \#:

Class (circle one): STA447 STA2006

Do not open this booklet until told to do so. Answer all questions.
You may use results from class. Aids allowed: NONE.
Point values for each question are indicated [in square brackets].
You should explain all of your solutions clearly.
You may continue on the back of the page if necessary (write "OVER").

DO NOT WRITE BELOW THIS LINE.

Question	Score
$\mathbf{1 (a)}$	$/ 3$
$\mathbf{1 (b)}$	$/ 2$
$\mathbf{1 (c)}$	$/ 2$
$1(\mathrm{~d})$	$/ 3$
$\mathbf{1 (e)}$	$/ 3$
$\mathbf{1 (f)}$	$/ 2$
$\mathbf{1 (g)}$	$/ 2$
$2(\mathrm{a})$	$/ 3$
$2(\mathrm{~b})$	$/ 3$
$2(\mathrm{c})$	$/ 3$

Question	Score
3	$/ 6$
4	$/ 5$
$5(\mathrm{a})$	$/ 3$
$5(\mathrm{~b})$	$/ 3$
$5(\mathrm{c})$	$/ 3$
$5(\mathrm{~d})$	$/ 3$
$5(\mathrm{e})$	$/ 3$
TOTAL:	$/ 52$

[Page 1 of 6.]

1. Suppose there are 10 lily pads arranged in a circle, numbered consecutively clockwise from 1 to 10. A frog begins on lily pad \#1. Each second, the frog jumps one pad clockwise with probability $1 / 4$, or two pads clockwise with probability $3 / 4$.
(a) [3] Specify a state space S, initial probabilities $\left\{\nu_{i}\right\}$, and transition probabilities $\left\{p_{i j}\right\}$, with respect to which this process is a Markov chain.
(b) [2] Determine if this Markov chain is irreducible.
(c) [2] Determine if this Markov chain is aperiodic, or if not then what its period equals.
(d) [3] Determine whether or not $\sum_{n=1}^{\infty} p_{15}^{(n)}=\infty$.
(e) [3] Either find a stationarity distribution $\left\{\pi_{i}\right\}$ for this chain, or prove that no stationary distribution exists.
(f) [2] Determine whether or not $\lim _{n \rightarrow \infty} p_{15}^{(n)}$ exists, and if so what it equals.
(g) [2] Determine whether or not $\lim _{n \rightarrow \infty} \frac{1}{2}\left[p_{15}^{(n)}+p_{15}^{(n+1)}\right]$ exists, and if so what it equals.
2. For each of the following sets of conditions, either provide (with explanation) an example of a state space S and Markov chain transition probabilities $\left\{p_{i j}\right\}_{i, j \in S}$ such that the conditions are satisfied, or prove that no such a Markov chain exists.
(a) [3] There is a state $k \in S$ such that if the chain is started at k, then there is a positive probability that the chain will visit k exactly twice more (and then never again).
(b) [3] The chain is irreducible and transient, and there are $k, \ell \in S$ with $f_{k \ell}=1$.
(c) [3] The chain is irreducible and transient, and is reversible with respect to some probability distribution π.
3. [6] Let $S=\{1,2,3, \ldots\}$, with $\pi_{i}=2 / 3^{i}$ for all $i \in S$. Find (with proof) explicit transition probabilities $\left\{p_{i j}\right\}_{i, j \in S}$ such that $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\pi_{j}$ for all $i, j \in S$. [Hint: Don't forget the Metropolis (MCMC) algorithm.]
4. [5] Consider the undirected graph with vertex set $V=\{1,2,3,4,5\}$, and an undirected edge (of weight 1) between each of the following six pairs of vertices (and no other edges): $(1,2),(2,3),(3,4),(4,5),(1,3)$, and $(3,5)$. Let $\left\{p_{i j}\right\}_{i, j \in V}$ be the transition probabilities for random walk on this graph. Compute (with full explanation) $\lim _{n \rightarrow \infty} p_{23}^{(n)}$, or prove that this limit does not exist.
5. Let $\left\{X_{n}\right\}$ be a Markov chain on the state space $S=\{1,2,3, \ldots\}$ of all positive integers, which is also a martingale. Assume $X_{0}=5$, and that there is $c>0$ such that $p_{i, i-1}=c$ and $p_{i, i+2}=1-c$ for all $i \geq 2$. Let $T=\inf \left\{n \geq 0: X_{n}=1\right.$ or $\left.X_{n} \geq 10\right\}$.
(a) [3] Determine (with explanation) what c must equal. [Hint: remember that $\left\{X_{n}\right\}$ is a martingale.]
(b) [3] Determine (with explanation) what p_{11} must equal. [Hint: again, remember that $\left\{X_{n}\right\}$ is a martingale.]
(c) [3] Determine (with explanation) the value of $\mathbf{E}\left(X_{3}\right)$.
(d) [3] Determine (with explanation) the value of $\mathbf{E}\left(X_{T}\right)$.
(e) [3] Prove or disprove that $\sum_{n=1}^{\infty} p_{55}^{(n)}=\infty$.
[END OF EXAMINATION: total points $=52$]
