STA4502 (Monte Carlo Estimation) Lecture Notes, Jan-Feb 2013

by Jeffrey S. Rosenthal, University of Toronto

(Last updated: February 15, 2013.)

Note: I will update these notes regularly (on the course web page). However, they are just rough, point-form notes, with no guarantee of completeness or accuracy. They should in no way be regarded as a substitute for attending the lectures, doing the homework exercises, or reading the reference books.

INTRODUCTION:

- Introduction to course, handout, references, prerequisites, etc.
- Course web page: probability.ca/sta4502
- Six weeks only; counts for QUARTER-credit only.
- Bahen Centre room 1200, Wednesdays 11-1, and Fridays 11-12.
- If not Stat Dept grad student, must REQUEST enrolment (by e-mail); need advanced undergraduate probability/statistics background, plus basic computer programming experience.
- Conversely, if you already know lots about MCMC etc., then this course might not be right for you since it's an INTRODUCTION to these topics.
- How many of you are stat grad students? undergrads? math? computer science? physics? economics? management? engineering? other? Auditing??
- Theme of the course: use (pseudo)randomness on a computer to simulate (and hence estimate) important/interesting quantities.
- Example: Suppose want to estimate $m:=\mathbf{E}\left[Z^{4} \cos (Z)\right]$, where $Z \sim \operatorname{Normal}(0,1)$.
- Monte Carlo solution: replicate a large number z_{1}, \ldots, z_{n} of $\operatorname{Normal}(0,1)$ random variables, and let $x_{i}=z_{i}^{4} \cos \left(z_{i}\right)$.
- Their mean $\bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_{i}$ is an (unbiased) estimate of $\mathbf{E}[X] \equiv \mathbf{E}\left[Z^{4} \cos (Z)\right]$.
$-\mathrm{R}: \mathrm{Z}=\operatorname{rnorm}(100) ; \mathrm{X}=\mathrm{Z} \wedge 4 * \cos (\mathrm{Z}) ; \operatorname{mean}(\mathrm{X})$ [file "RMC"]
- unstable ... but if replace " 100 " with " 1000000 " then \bar{x} close to $-1.213 \ldots$
- Variability??
- Well, can estimate standard deviation of \bar{x} by "standard error" of \bar{x}, which is:

$$
s e=n^{-1 / 2} \operatorname{sd}(x) \approx n^{-1 / 2} \sqrt{\operatorname{var}(x)}=n^{-1 / 2} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

[file "RMC"]

- Then what is, say, a 95% confidence interval for m ?
- Well, by central limit theorem (CLT), for large n, have $\bar{x} \approx N(m, v) \approx N\left(m, s e^{2}\right)$.
- (Strictly speaking, should use " t " distribution, not normal distribution ... but if n large that doesn't really matter - ignore it for now.)
- So $\frac{m-\bar{x}}{s e} \approx N(0,1)$.
$-\mathrm{So}, \mathbf{P}\left(-1.96<\frac{m-\bar{x}}{s e}<1.96\right) \approx 0.95$.
- So, $\mathbf{P}(\bar{x}-1.96$ se $<m<\bar{x}+1.96$ se $) \approx 0.95$.
- i.e., approximate 95% confidence interval is [file "RMC"]

$$
(\bar{x}-1.96 s e, \bar{x}+1.96 s e) .
$$

- Alternatively, could compute expectation as

$$
\int_{-\infty}^{\infty} z^{4} \cos (z) \frac{e^{-z^{2} / 2}}{\sqrt{2 \pi}} d z
$$

Analytic? Numerical? Better? Worse? [file "RMC": -1.213]

- What about higher-dimensional versions? (Can't do numerical integration!)
- Note: In this course we will just use R to automatically sample from simple distributions like Normal, Uniform, Exponential, etc.
- (How does it work? Discussed in e.g. Statistical Computing course.)
- What if distribution too complicated to sample from?
- (MCMC! ... including Metropolis, Gibbs, tempered, trans-dimensional, ...)

MONTE CARLO INTEGRATION:

- How to compute an integral with Monte Carlo?
- Re-write it as an expectation!
- EXAMPLE: Want to compute $\int_{0}^{1} \int_{0}^{1} g(x, y) d x d y$.
- Regard this as $\mathbf{E}[g(X, Y)]$, where X, Y i.i.d. $\sim \operatorname{Uniform}[0,1]$.
- e.g. $g(x, y)=\cos (\sqrt{x y})$. (file "RMCint") Easy!
- Get about $0.88 \pm 0.003 \ldots$ Mathematica gives 0.879544 .
- e.g. estimate $I=\int_{0}^{5} \int_{0}^{4} g(x, y) d y d x$, where $g(x, y)=\cos (\sqrt{x y})$.
- Here

$$
\int_{0}^{5} \int_{0}^{4} g(x, y) d y d x=\int_{0}^{5} \int_{0}^{4} 5 \cdot 4 \cdot g(x, y)(1 / 4) d y(1 / 5) d x=\mathbf{E}[5 \cdot 4 \cdot g(X, Y)]
$$

where $X \sim$ Uniform $[0,5]$ and $Y \sim$ Uniform $[0,4]$.

- So, let $X_{i} \sim \operatorname{Uniform}[0,5]$, and $Y_{i} \sim \operatorname{Uniform}[0,4]$ (all independent).
- Estimate I by $\frac{1}{M} \sum_{i=1}^{M}\left(5 \cdot 4 \cdot g\left(X_{i}, Y_{i}\right)\right)$.
- Standard error: se $=M^{-1 / 2} s d\left(5 \cdot 4 \cdot g\left(X_{1}, Y_{1}\right), \ldots, 5 \cdot 4 \cdot g\left(X_{M}, Y_{M}\right)\right)$.
- With $M=10^{6}$, get about $-4.11 \pm 0.01 \ldots$ (file "RMCint2")
- e.g. estimate $\int_{0}^{1} \int_{0}^{\infty} h(x, y) d y d x$, where $h(x, y)=e^{-y^{2}} \cos (\sqrt{x y})$.
- (Can't use "Uniform" expectations.)
- Instead, write this as $\int_{0}^{1} \int_{0}^{\infty}\left(e^{y} h(x, y)\right) e^{-y} d y d x$.
- This is the same as $\mathbf{E}\left[e^{Y} h(X, Y)\right]$, where $X \sim \operatorname{Uniform}[0,1]$ and $Y \sim \operatorname{Exponential(1)}$ are independent.
- So, estimate it by $\frac{1}{M} \sum_{i=1}^{M} e^{Y_{i}} h\left(X_{i}, Y_{i}\right)$, where $X_{i} \sim \operatorname{Uniform}[0,1]$ and $Y_{i} \sim$ Exponential(1) (i.i.d.).
- With $M=10^{6}$ get about $0.767 \pm 0.0004 \ldots$ very accurate! (file "RMCint3")
- (Check: Numerical integration [Mathematica] gives 0.767211.)
- Alternatively, could write this as $\int_{0}^{1} \int_{0}^{\infty}\left(\frac{1}{5} e^{5 y} h(x, y)\right)\left(5 e^{-5 y}\right) d y d x=\mathbf{E}\left[\frac{1}{5} e^{5 Y} h(X, Y)\right]$ where $X \sim \operatorname{Uniform}[0,1]$ and $Y \sim \operatorname{Exponential(5)~(indep.).~}$
- Then, estimate it by $\frac{1}{M} \sum_{i=1}^{M} \frac{1}{5} e^{5 y_{i}} h\left(x_{i}, y_{i}\right)$, where $x_{i} \sim \operatorname{Uniform}[0,1]$ and $y_{i} \sim$ Exponential(5) (i.i.d.).
- With $M=10^{6}$, get about $0.767 \pm 0.0016 \ldots$ larger standard error \ldots (file "RMCint4").
- If replace 5 by $1 / 5$, get about $0.767 \pm 0.0015 \ldots$ about the same.
- So which choice is best?
- Whichever one minimises the standard error! $(\lambda \approx 1.5$, se ≈ 0.00025 ? $)$

END WEDNESDAY \#1

- In general, to evaluate $I \equiv \mathbf{E}[h(Y)]=\int h(y) \pi(y) d y$, where Y has density π, could instead re-write this as $I=\int h(x) \frac{\pi(x)}{f(x)} f(x) d x$, where f is easily sampled from, with $f(x)>0$ whenever $\pi(x)>0$.
- Then $I=\mathbf{E}\left(h(X) \frac{\pi(X)}{f(X)}\right)$, where X has density f. ("Importance Sampling")
- Can then do classical (iid) Monte Carlo integration, get standard errors etc.
- Good if easier to sample from f than π, and/or if the function $h(x) \frac{\pi(x)}{f(x)}$ is less variable than h itself.
- In general, best to make $h(x) \frac{\pi(x)}{f(x)}$ approximately constant.
- e.g. extreme case: if $I=\int_{0}^{\infty} e^{-3 x} d x$, then $I=\int_{0}^{\infty}(1 / 3)\left(3 e^{-3 x}\right) d x=\mathbf{E}[1 / 3]$ where $X \sim \operatorname{Exponential(3),~so~} I=1 / 3$ (error $=0$, no MC needed).

UNNORMALISED DENSITIES:

- Suppose now that $\pi(y)=c g(y)$, where we know g but don't know c or π. ("Unnormalised density", e.g. Bayesian posterior.)
- Obviously, $c=\frac{1}{\int g(y) d y}$, but this might be hard to compute.
- Still, $I=\int h(x) \pi(x) d x=\int h(x) c g(x) d x=\frac{\int h(x) g(x) d x}{\int g(x) d x}$.
- If sample $\left\{x_{i}\right\} \sim f$ (i.i.d.), then $\int h(x) g(x) d x=\int(h(x) g(x) / f(x)) f(x) d x=$ $\mathbf{E}[h(X) g(X) / f(X)]$ where $X \sim f$.
- So, $\int h(x) g(x) d x \approx \frac{1}{M} \sum_{i=1}^{M}\left(h\left(x_{i}\right) g\left(x_{i}\right) / f\left(x_{i}\right)\right)$.
- Similarly, $\int g(x) d x \approx \frac{1}{M} \sum_{i=1}^{M}\left(g\left(x_{i}\right) / f\left(x_{i}\right)\right)$.
- So, $I \approx \frac{\sum_{i=1}^{M}\left(h\left(x_{i}\right) g\left(x_{i}\right) / f\left(x_{i}\right)\right)}{\sum_{i=1}^{M}\left(g\left(x_{i}\right) / f\left(x_{i}\right)\right)}$. ("Importance Sampling": weighted average)
- (Not unbiased, standard errors less clear, but still consistent.)
- (Good to use same sample $\left\{x_{i}\right\}$ for both numerator and denominator: easier computationally, and smaller variance.)
- Example: compute $I \equiv \mathbf{E}\left(Y^{2}\right)$ where Y has density $c y^{3} \sin \left(y^{4}\right) \cos \left(y^{5}\right) \mathbf{1}_{0<y<1}$, where $c>0$ unknown (and hard to compute!).
- Here $g(y)=y^{3} \sin \left(y^{4}\right) \cos \left(y^{5}\right) \mathbf{1}_{0<y<1}$, and $h(y)=y^{2}$.
- Let $f(y)=6 y^{5} \mathbf{1}_{0<y<1}$. [Fact (check): if $U \sim \operatorname{Uniform}[0,1]$, then $X \equiv U^{1 / 6} \sim f$.]
- Then $I \approx \frac{\sum_{i=1}^{M}\left(h\left(x_{i}\right) g\left(x_{i}\right) / f\left(x_{i}\right)\right)}{\sum_{i=1}^{M}\left(g\left(x_{i}\right) / f\left(x_{i}\right)\right)}=\frac{\sum_{i=1}^{M}\left(\sin \left(x_{i}^{4}\right) \cos \left(x_{i}^{5}\right)\right)}{\sum_{i=1}^{M}\left(\sin \left(x_{i}^{4}\right) \cos \left(x_{i}^{5}\right) / x_{i}^{2}\right)}$. (file "Rimp"... get about $0.766 \ldots$)
- Or, let $f(y)=4 y^{3} \mathbf{1}_{0<y<1}$. [Then if $U \sim$ Uniform[0,1], then $U^{1 / 4} \sim f$.]
- Then $I \approx \frac{\sum_{i=1}^{M}\left(h\left(x_{i}\right) g\left(x_{i}\right) / f\left(x_{i}\right)\right)}{\sum_{i=1}^{M}\left(g\left(x_{i}\right) / f\left(x_{i}\right)\right)}=\frac{\sum_{i=1}^{M}\left(\sin \left(x_{i}^{4}\right) \cos \left(x_{i}^{5}\right) x_{i}^{2}\right)}{\sum_{i=1}^{M}\left(\sin \left(x_{i}^{4}\right) \cos \left(x_{i}^{5}\right)\right)}$. (file "Rimp")

END FRIDAY \#1

- With importance sampling, is it important to use the same samples $\left\{x_{i}\right\}$ in both numerator and denominator?
- What if independent samples are used instead?
- Let's try it! (file "Rimpind")
- Both ways work, but usually the same samples work better.
- What other methods are available to iid sample from π ?

REJECTION SAMPLER:

- Assume $\pi(x)=c g(x)$, with π and c unknown, g known but hard to sample from.
- Want to sample $X \sim \pi$.
- Then if $X_{1}, X_{2}, \ldots, X_{M} \sim \pi$ iid, then can estimate $\mathbf{E}_{\pi}(h)$ by $\frac{1}{M} \sum_{i=1}^{M} h\left(X_{i}\right)$, etc.
- Find some other, easily-sampled density f, and known $K>0$, such that $K f(x) \geq g(x)$ for all x.
- Sample $X \sim f$, and $U \sim \operatorname{Uniform}[0,1]$ (indep.).
- If $U \leq g(X) / K f(X)$, then accept X (as a draw from π).
- Otherwise, reject X and start over again.
- Now, $\mathbf{P}(U \leq g(X) / K f(X) \mid X=x)=g(x) / K f(x)$, so conditional on accepting, we have that

$$
\begin{aligned}
& \mathbf{P}\left(X \leq y \left\lvert\, U \leq \frac{g(X)}{K f(X)}\right.\right)=\frac{\mathbf{P}\left(X \leq y, U \leq \frac{g(X)}{K f(X)}\right)}{\mathbf{P}\left(U \leq \frac{g(X)}{K f(X)}\right)} \\
& =\frac{\int_{-\infty}^{y} f(x) \frac{g(x)}{K f(x)} d x}{\int_{-\infty}^{\infty} f(x) \frac{g(x)}{K f(x)} d x}=\frac{\int_{-\infty}^{y} g(x) d x}{\int_{-\infty}^{\infty} g(x) d x}=\int_{-\infty}^{y} \pi(x) d x .
\end{aligned}
$$

- So, conditional on accepting, $X \sim \pi$. Good! iid!
- However, prob. of accepting may be very small, then get very few samples.
- Example: $\pi=N(0,1)$, i.e. $g(x)=\pi(x)=(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right)$.
- Want: $\mathbf{E}_{\pi}\left(X^{4}\right)$, i.e. $h(x)=x^{4}$.
- Let f be double-exponential distribution, i.e. $f(x)=\frac{1}{2} e^{-|x|}$.
- If $K=8$, then:
- For $|x| \leq 2, K f(x)=8 \frac{1}{2} \exp (-|x|) \geq 8 \frac{1}{2} \exp (-2) \geq(2 \pi)^{-1 / 2} \geq \pi(x)=g(x)$.
- For $|x| \geq 2, K f(x)=8 \frac{1}{2} \exp (-|x|) \geq 8 \frac{1}{2} \exp \left(-x^{2} / 2\right) \geq(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right)=$ $\pi(x)=g(x)$.
- So, can apply rejection sampler with this f and K, to get samples, estimate of $\mathbf{E}[X]$, estimate of $\mathbf{E}[h(X)]$, estimate of $\mathbf{P}[X<-1]$, etc. (file "Rrej")
- For Rejection Sampler, $P($ accept $)=\mathbf{E}[P($ accept $\mid X)]=\mathbf{E}\left[\frac{g(X)}{K f(X)}\right]=\int \frac{g(x)}{K f(x)} f(x) d x=$ $\frac{1}{K} \int g(x) d x=\frac{1}{c K}$. (Only depends on K, not f.)
- So, in M attempts, get about $M / c K$ iid samples.
- ("Rrej" example: $c=1, K=8, M=10,000$, so get about $M / 8=1250$ samples.)
- Since c fixed, try to minimise K.
- Extreme case: $f(x)=\pi(x)$, so $g(x)=\pi(x) / c=f(x) / c$, and can take $K=1 / c$, whence $P($ accept $)=1$, iid sampling: optimal.
- Note: these algorithms all work in discrete case too.
- Can let π, f, etc. be "probability functions", i.e. probability densities with respect to counting measure.
- Then the algorithms proceed exactly as before.
- AUXILIARY VARIABLE APPROACH: (related: "slice sampler")
- Suppose $\pi(x)=c g(x)$, and (X, Y) chosen uniformly under the graph of g.
- i.e., $(X, Y) \sim \operatorname{Uniform}\left\{(x, y) \in \mathbf{R}^{2}: 0 \leq y \leq g(x)\right\}$.
- Then $X \sim \pi$, i.e. we have sampled from π.
- Why? For $a<b, \mathbf{P}(a<X<b)=\frac{\text { area with } a<X<b}{\text { total area }}=\frac{\int_{a}^{b} g(x) d x}{\int_{-\infty}^{\infty} g(x) d x}=\int_{a}^{b} \pi(x) d x$.
- So, if repeat, get i.i.d. samples from π, can estimate $\mathbf{E}_{\pi}(h)$ etc.
- Auxiliary Variable rejection sampler:
- If support of g contained in $[L, R]$, and $|g(x)| \leq K$, then can first sample $(X, Y) \sim$ Uniform $([L, R] \times[0, K])$, then reject if $Y>g(X)$, otherwise accept as sample with $(X, Y) \sim \operatorname{Uniform}\{(x, y): 0 \leq y \leq g(x)\}$, hence $X \sim \pi$.
- Example: $g(y)=y^{3} \sin \left(y^{4}\right) \cos \left(y^{5}\right) \mathbf{1}_{0<y<1}$.
- Then $L=0, R=1, K=1$.
- So, sample $X, Y \sim$ Uniform $[0,1]$, then keep X iff $Y \leq g(X)$.
- If $h(y)=y^{2}$, could compute e.g. $\mathbf{E}_{\pi}(h)$ as the mean of the squares of the accepted samples. (file "Raux")
- Can iid / importance / rejection / auxiliary sampling solve all problems? No!
- Many challenging cases arise, e.g. from Bayesian statistics (later).
- Some are high-dimensional, and the above algorithms fail.
- Alternative algorithm: MCMC!

MARKOV CHAIN MONTE CARLO (MCMC):

- Suppose have complicated, high-dimensional density $\pi=c g$.
- Want samples $X_{1}, X_{2}, \ldots \sim \pi$. (Then can do Monte Carlo.)
- Define a Markov chain (random process) $X_{0}, X_{1}, X_{2}, \ldots$, so for large $n, X_{n} \approx \pi$.
- METROPOLIS ALGORITHM (1953):
- Choose some initial value X_{0} (perhaps random).
- Then, given X_{n-1}, choose a proposal move $Y_{n} \sim M V N\left(X_{n-1}, \sigma^{2} I\right)$ (say).
- Let $A_{n}=\pi\left(Y_{n}\right) / \pi\left(X_{n-1}\right)=g\left(Y_{n}\right) / g\left(X_{n-1}\right)$, and $U_{n} \sim \operatorname{Uniform}[0,1]$.
- Then, if $U_{n}<A_{n}$, set $X_{n}=Y_{n}$ ("accept"), otherwise set $X_{n}=X_{n-1}$ ("reject").
- Repeat, for $n=1,2,3, \ldots, M$.
- (Note: only need to compute $\pi\left(Y_{n}\right) / \pi\left(X_{n-1}\right)$, so multiplicative constants cancel.)
- Fact: Then, for large n, have $X_{n} \approx \pi$. ("rwm.html" Java applet)

END WEDNESDAY \#2

- Handouts: class homework, project, participation. (Also on course web page.)
- Then can estimate $\mathbf{E}_{\pi}(h) \equiv \int h(x) \pi(x) d x$ by:

$$
\mathbf{E}_{\pi}(h) \approx \frac{1}{M-B} \sum_{i=B+1}^{M} h\left(X_{i}\right),
$$

where B ("burn-in") chosen large enough so $X_{B} \approx \pi$, and M chosen large enough to get good Monte Carlo estimates.

- Aside: if accepted all proposals, then would have a "random walk" Markov chain.
- So, this is called the "random walk Metropolis" (RWM) algorithm.
- How large B ? Difficult to say! (Some theory ... active area of research [see e.g. Rosenthal, "Quantitative convergence rates of Markov chains: A simple account", Elec Comm Prob 2002, on instructor's web page] ... usually use trial-and-error ...)
- What initial value X_{0} ?
- Virtually any one will do, but "central" ones best.
- Ideal: "overdispersed starting distribution", i.e. choose X_{0} randomly from some distribution that "covers" the "important" part of the state space.
- EXAMPLE: $g(y)=y^{3} \sin \left(y^{4}\right) \cos \left(y^{5}\right) \mathbf{1}_{0<y<1}$.
- Want to compute (again!) $\mathbf{E}_{\pi}(h)$ where $h(y)=y^{2}$.
- Use Metropolis algorithm with proposal $Y \sim N(X, 1)$. [file "Rmet"]
- Works pretty well, but lots of variability!
- Plot: appears to have "good mixing"...
- EXAMPLE: $\pi\left(x_{1}, x_{2}\right)=C\left|\cos \left(\sqrt{x_{1} x_{2}}\right)\right| I\left(0 \leq x_{1} \leq 5,0 \leq x_{2} \leq 4\right)$.
- Want to compute $\mathbf{E}_{\pi}(h)$, where $h\left(x_{1}, x_{2}\right)=e^{x_{1}}+\left(x_{2}\right)^{2}$.
- Metropolis algorithm ... works ... gets between about 34 and $44 \ldots$ but large uncertainty ... (file "Rmet2") (Mathematica gets 38.7044)
- Individual plots appear to have "good mixing" ...
- Joint plot shows fewer samples where $x_{1} x_{2} \approx(\pi / 2)^{2} \doteq 2.5 \ldots$

END FRIDAY \#2

- e.g. if $\pi(x)=\exp \left(\sum_{i<j}\left|x_{j}-x_{i}\right|\right)$, then $\log (\pi(x))=\sum_{i<j}\left|x_{j}-x_{i}\right|$.

- OPTIMAL SCALING:

- Can change proposal distribution to $Y_{n} \sim \operatorname{MVN}\left(X_{n-1}, \sigma^{2} I\right)$ for any $\sigma>0$.
- Which is best?
- If σ too small, then usually accept, but chain won't move much.
- If σ too large, then will usually reject proposals, so chain still won't move much.
- Optimal: need σ "just right" to avoid both extremes. ("Goldilocks Principle")
- Can experiment ... ("rwm.html" applet, files "Rmet", "Rmet2") ...
- Some theory ... limited ... active area of research ...
- General principle: the acceptance rate should be far from 0 and far from 1.
- In a certain idealised high-dimensional limit, optimal acceptance rate is 0.234 (!).
[Roberts et al., Ann Appl Prob 1997; Roberts and Rosenthal, Stat Sci 2001]

MCMC STANDARD ERROR:

- What about standard error, i.e. uncertainty?
- It's usually larger than in iid case (due to correlations), and harder to quantify.
- Simplest: re-run the chain many times, with same M and B, with different initial values drawn from some overdispersed starting distribution, and compute standard error of the sequence of estimates.
- Then can analyse the estimates obtained as iid ...
- But how to estimate standard error from a single run?
- i.e., how to estimate $v \equiv \operatorname{Var}\left(\frac{1}{M-B} \sum_{i=B+1}^{M} h\left(X_{i}\right)\right)$?
- Let $\bar{h}(x)=h(x)-\mathbf{E}_{\pi}(h)$, so $\mathbf{E}_{\pi}(\bar{h})=0$.
- And, assume B large enough that $X_{i} \approx \pi$ for $i>B$.
- Then, for large $M-B$,

$$
\begin{aligned}
& v \approx \mathbf{E}_{\pi}\left[\left(\left(\frac{1}{M-B} \sum_{i=B+1}^{M} h\left(X_{i}\right)\right)-\mathbf{E}_{\pi}(h)\right)^{2}\right]=\mathbf{E}_{\pi}\left[\left(\frac{1}{M-B} \sum_{i=B+1}^{M} \bar{h}\left(X_{i}\right)\right)^{2}\right] \\
&=\frac{1}{(M-B)^{2}}\left[(M-B) \mathbf{E}_{\pi}\left(\bar{h}\left(X_{i}\right)^{2}\right)+2(M-B-1) \mathbf{E}_{\pi}\left(\bar{h}\left(X_{i}\right) \bar{h}\left(X_{i+1}\right)\right)\right. \\
&\left.+2(M-B-2) \mathbf{E}_{\pi}\left(\bar{h}\left(X_{i}\right) \bar{h}\left(X_{i+2}\right)\right)+\ldots\right] \\
& \approx \frac{1}{M-B}\left(\mathbf{E}_{\pi}\left(\bar{h}\left(X_{i}\right)^{2}\right)+2 \mathbf{E}_{\pi}\left(\bar{h}\left(X_{i}\right) \bar{h}\left(X_{i+1}\right)\right)+2 \mathbf{E}_{\pi}\left(\bar{h}\left(X_{i}\right) \bar{h}\left(X_{i+2}\right)\right)+\ldots\right) \\
&=\frac{1}{M-B}\left(\operatorname{Var}_{\pi}(h)+2 \operatorname{Cov}_{\pi}\left(h\left(X_{i}\right) h\left(X_{i+1}\right)\right)+2 \operatorname{Cov}_{\pi}\left(h\left(X_{i}\right) h\left(X_{i+2}\right)\right)+\ldots\right) \\
&=\frac{1}{M-B} \operatorname{Var}_{\pi}(h)\left(1+2 \operatorname{Corr}_{\pi}\left(h\left(X_{i}\right), h\left(X_{i+1}\right)\right)+2 \operatorname{Corr}_{\pi}\left(h\left(X_{i}\right), h\left(X_{i+2}\right)\right)+\ldots\right) \\
& \equiv \frac{1}{M-B} \operatorname{Var}_{\pi}(h)(\operatorname{varfact})=(\operatorname{iid} \operatorname{variance})(\operatorname{varfact}),
\end{aligned}
$$

where

$$
\text { varfact }=1+2 \sum_{k=1}^{\infty} \operatorname{Corr}_{\pi}\left(h\left(X_{0}\right), h\left(X_{k}\right)\right) \equiv 1+2 \sum_{k=1}^{\infty} \rho_{k}=\sum_{k=-\infty}^{\infty} \rho_{k}
$$

("integrated auto-correlation time"). Also varfact $=2\left(\sum_{k=0}^{\infty} \rho_{k}\right)-1$.

- Then can estimate both iid variance, and varfact, from the sample run, as usual.
- Note: to compute varfact, don't sum over all k, just e.g. until, say, $\left|\rho_{k}\right|<0.05$ or $\rho_{k}<0$ or \ldots
- (Can use R's built-in "acf" function, or can write your own - better.)
- Then standard error $=s e=\sqrt{v}=(i i d-s e) \sqrt{\text { varfact }}$.
- e.g. the files Rmet and Rmet2 [modified]. (Recall: true answers are about 0.766 and 38.7, respectively.)
- Usually varfact $\gg 1$; try to get "better" chains so varfact smaller.
- Sometimes even try to design chain to get varfact <1 ("antithetic").

CONFIDENCE INTERVALS:

- Suppose we estimate $u \equiv \mathbf{E}_{\pi}(h)$ by the quantity $e=\frac{1}{M-B} \sum_{i=B+1}^{M} h\left(X_{i}\right)$, and obtain an estimate e and an approximate variance (as above) v.
- Then what is, say, a 95% confidence interval for u ?
- Well, if have central limit theorem (CLT), then for large $M-B, e \approx N(u, v)$.
$-\mathrm{So}(e-u) v^{-1 / 2} \approx N(0,1)$.
- So, $\mathbf{P}\left(-1.96<(e-u) v^{-1 / 2}<1.96\right) \approx 0.95$.
- So, $\mathbf{P}(-1.96 \sqrt{v}<e-u<1.96 \sqrt{v}) \approx 0.95$.
- i.e., with prob 95%, the interval ($e-1.96 \sqrt{v}, e+1.96 \sqrt{v}$) will contain u.
- (Again, strictly speaking, should use "t" distribution, not normal distribution ... but if $M-B$ large that doesn't really matter - ignore it for now.)
- e.g. the files Rmet and Rmet2 [modified]. (Recall: true answers are about 0.766 and 38.7, respectively.)
- But does a CLT even hold??
- But does a CLT even hold??
- Does not follow from classical i.i.d. CLT. Does not always hold. But often does.
- For example, CLT holds if chain is "geometrically ergodic" (later!) and $\mathbf{E}_{\pi}\left(|h|^{2+\delta}\right)<$ ∞ for some $\delta>0$.
- (If chain also reversible then don't need δ : Roberts and Rosenthal, "Geometric ergodicity and hybrid Markov chains", ECP 1997.)
- So MCMC is more complicated than standard Monte Carlo.
- Why should we bother?
- Some problems too challenging for other methods. For example ...

BAYESIAN STATISTICS:

- Have unknown parameter(s) θ, and a statistical model (likelihood function) for how the distribution of the data Y depends on $\theta: \mathcal{L}(Y \mid \theta)$.
- Have a prior distribution, representing our "initial" (subjective?) probabilities for θ : $\mathcal{L}(\theta)$.
- Combining these gives a full joint distribution for θ and Y, i.e. $\mathcal{L}(\theta, Y)$.
- Then posterior distribution of $\theta, \pi(\theta)$, is then the conditional distribution of θ, conditioned on the observed data y, i.e. $\pi(\theta)=\mathcal{L}(\theta \mid Y=y)$.
- In terms of densities, if have prior density $f_{\theta}(\theta)$, and likelihood $f_{Y \mid \theta}(y, \theta)$, then joint density is $f_{\theta, Y}(\theta, y)=f_{\theta}(\theta) f_{Y \mid \theta}(y, \theta)$, and posterior density is

$$
\pi(\theta)=\frac{f_{\theta, Y}(\theta, y)}{f_{Y}(y)}=c f_{\theta, Y}(\theta, y)=c f_{\theta}(\theta) f_{Y \mid \theta}(y, \theta)
$$

- Bayesian Statistics Example: VARIANCE COMPONENTS MODEL (a.k.a. "random effects model"):
- Suppose some population has overall mean μ (unknown).
- Population consists of K groups.
- Observe $Y_{i 1}, \ldots, Y_{i J_{i}}$ from group i, for $1 \leq i \leq K$.
- Assume $Y_{i j} \sim N\left(\theta_{i}, W\right)$ (cond. ind.), where θ_{i} and W unknown.
- Assume the different θ_{i} are "linked" by $\theta_{i} \sim N(\mu, V)$ (cond. ind.), with μ and V also unknown.
- Want to estimate some or all of $V, W, \mu, \theta_{1}, \ldots, \theta_{K}$.
- Bayesian approach: use prior distributions, e.g. ("conjugate"):

$$
V \sim I G\left(a_{1}, b_{1}\right) ; \quad W \sim I G\left(a_{2}, b_{2}\right) ; \quad \mu \sim N\left(a_{3}, b_{3}\right)
$$

where a_{i}, b_{i} known constants, and $I G(a, b)$ is "inverse gamma" distribution, with density $\frac{b^{a}}{\Gamma(a)} e^{-b / x} x^{-a-1}$ for $x>0$.

- Combining the above dependencies, we see that the joint density is (for $V, W>0$):

$$
\begin{gathered}
f\left(V, W, \mu, \theta_{1}, \ldots, \theta_{K}, Y_{11}, Y_{12}, \ldots, Y_{K J_{K}}\right) \\
=C_{1}\left(e^{-b_{1} / V} V^{-a_{1}-1}\right)\left(e^{-b_{2} / W} W^{-a_{2}-1}\right)\left(e^{-\left(\mu-a_{3}\right)^{2} / 2 b_{3}}\right) \times \\
\times\left(\prod_{i=1}^{K} V^{-1 / 2} e^{-\left(\theta_{i}-\mu\right)^{2} / 2 V}\right)\left(\prod_{i=1}^{K} \prod_{j=1}^{J_{i}} W^{-1 / 2} e^{-\left(Y_{i j}-\theta_{i}\right)^{2} / 2 W}\right) \\
=C_{2} e^{-b_{1} / V} V^{-a_{1}-1} e^{-b_{2} / W} W^{-a_{2}-1} e^{-\left(\mu-a_{3}\right)^{2} / 2 b_{3}} V^{-K / 2} W^{-\frac{1}{2} \sum_{i=1}^{K} J_{i}} \times \\
\times \exp \left[-\sum_{i=1}^{K}\left(\theta_{i}-\mu\right)^{2} / 2 V-\sum_{i=1}^{K} \sum_{j=1}^{J_{i}}\left(Y_{i j}-\theta_{i}\right)^{2} / 2 W\right] .
\end{gathered}
$$

- Then

$$
\begin{gathered}
\pi\left(V, W, \mu, \theta_{1}, \ldots, \theta_{K}\right) \\
=C_{3}\left(e^{-b_{1} / V} V^{-a_{1}-1}\right)\left(e^{-b_{2} / W} W^{-a_{2}-1}\right)\left(e^{-\left(\mu-a_{3}\right)^{2} / 2 b_{3}}\right) \times \\
\times\left(\prod_{i=1}^{K} V^{-1 / 2} e^{-\left(\theta_{i}-\mu\right)^{2} / 2 V}\right)\left(\prod_{i=1}^{K} \prod_{j=1}^{J_{i}} W^{-1 / 2} e^{-\left(Y_{i j}-\theta_{i}\right)^{2} / 2 W}\right)
\end{gathered}
$$

- COMMENT: For big complicated π, often better to work with the LOGARITHMS, i.e. accept if $\log \left(U_{n}\right)<\log \left(A_{n}\right)=\log \left(\pi\left(Y_{n}\right)\right)-\log \left(\pi\left(X_{n-1}\right)\right)$.
- Then only need to compute $\log (\pi(x))$, which could be easier / finite.
- Bayesian Statistics Example: VARIANCE COMPONENTS MODEL (cont'd):
- After a bit of simplifying,

$$
\begin{gathered}
\pi\left(V, W, \mu, \theta_{1}, \ldots, \theta_{K}\right) \\
=C e^{-b_{1} / V} V^{-a_{1}-1} e^{-b_{2} / W} W^{-a_{2}-1} e^{-\left(\mu-a_{3}\right)^{2} / 2 b_{3}} V^{-K / 2} W^{-\frac{1}{2}} \sum_{i=1}^{K} J_{i}
\end{gathered} \times .
$$

- Better to program on \log scale: $\log \pi\left(V, W, \mu, \theta_{1}, \ldots, \theta_{K}\right)=\ldots$.
- Dimension: $d=K+3$, e.g. $K=19, d=22$.
- How to compute/estimate, say, $\mathbf{E}_{\pi}(W / V)$? Or sensitivity to choice of e.g. b_{1} ?
- Numerical integration? No, too high-dimensional!
- Importance sampling? Perhaps, but what " f "? Not very efficient!
- Rejection sampling? What " f "? What " K "? Virtually no samples!
- Many applications, e.g.:
- Predicting success at law school (D. Rubin, JASA 1980), $K=82$ schools.
- Melanoma recurrence (http://www.mssanz.org.au/modsim07/papers/52_s24/ Analysing_Clinicals24_Bartolucci_.pdf), $K=19$ patient catagories.
- Comparing baseball home-run hitters (J. Albert, The American Statistician 1992), $K=12$ players.
- Analysing fabric dyes (Davies 1967; Box/Tiao 1973; Gelfand/Smith JASA 1990), $K=6$ batches of dyestuff. (data in file "Rdye")

INDEPENDENCE SAMPLER:

- Recall: with "random-walk Metropolis", propose $Y_{n} \sim M V N\left(X_{n-1}, \sigma^{2} I_{d}\right)$, then accept if $U_{n}<A_{n}$ where $U_{n} \sim \operatorname{Uniform}[0,1]$ and $A_{n}=\pi\left(Y_{n}\right) / \pi\left(X_{n-1}\right)$.
- One alternative (of many - later) is the "independence sampler".
- Propose $\left\{Y_{n}\right\} \sim q(\cdot)$, i.e. the $\left\{Y_{n}\right\}$ are i.i.d. from some fixed density q, independent of X_{n-1}. (e.g. $\left.Y_{n} \sim \operatorname{MVN}\left(0, I_{d}\right)\right)$
- Then accept if $U_{n}<A_{n}$ where $U_{n} \sim \operatorname{Uniform}[0,1]$ and $A_{n}=\frac{\pi\left(Y_{n}\right) q\left(X_{n-1}\right)}{\pi\left(X_{n-1}\right) q\left(Y_{n}\right)}$.
- Special case of the "Metropolis-Hastings algorithm", where $Y_{n} \sim q\left(X_{n-1}, \cdot\right)$, and $A_{n}=\frac{\pi\left(Y_{n}\right) q\left(Y_{n}, X_{n-1}\right)}{\pi\left(X_{n-1}\right) q\left(X_{n-1}, Y_{n}\right)}$ (later).
- Very special case: if $q(y) \equiv \pi(y)$, i.e. propose exactly from target density π, then $A_{n} \equiv 1$, i.e. make great proposals, and always accept them (iid).
- EXAMPLE: independence sampler with $\pi(x)=e^{-x}$ and $q(x)=k e^{-k x}$.
- Then if $X_{n-1}=x$ and $Y_{n}=y$, then $A_{n}=\frac{e^{-y} k e^{-k x}}{e^{-x} k e^{-k y}}=e^{(k-1)(y-x)}$. (file "Rind")
$-k=1$: iid sampling (great).
$-k=0.01$: proposals way too large (so-so).
$-k=5$: proposals somewhat too small (terrible).
- And with $k=5$, confidence intervals often miss 1. (file "Rind2")
- Why is large k so much worse than small k ?

MCMC CONVERGENCE RATES, PART I:

- $\left\{X_{n}\right\}$: Markov chain on \mathcal{X}, with stationary distribution $\Pi(\cdot)$.
- Let $P^{n}(x, S)=\mathbf{P}\left[X_{n} \in S \mid X_{0}=x\right]$.
- Hope that for large $n, P^{n}(x, S) \approx \Pi(S)$.
- Let $D(x, n)=\left\|P^{n}(x, \cdot)-\Pi(\cdot)\right\| \equiv \sup _{S \subseteq \mathcal{X}}\left|P^{n}(x, S)-\Pi(S)\right|$.
- DEFN: chain is ergodic if $\lim _{n \rightarrow \infty} D(x, n)=0$, for Π-a.e. $x \in \mathcal{X}$.
- DEFN: chain is geometrically ergodic if there is $\rho<1$, and $M: \mathcal{X} \rightarrow[0, \infty]$ which is Π-a.e. finite, such that $D(x, n) \leq M(x) \rho^{n}$ for all $x \in \mathcal{X}$ and $n \in \mathbf{N}$.
- DEFN: a quantitative bound on convergence is an actual number n^{*} such that $D\left(x, n^{*}\right)<$ 0.01 (say). [Then sometimes say chain "converges in n^{*} iterations".]
- Quantitative bounds often difficult (though I've worked on them a lot), but "geometric ergodicity" often easier to verify.
- Fact: CLT holds for $\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)$ if chain is geometrically ergodic and $\mathbf{E}_{\pi}\left(|h|^{2+\delta}\right)<$ ∞ for some $\delta>0$.
- (If chain also reversible then don't need δ : Roberts and Rosenthal, "Geometric
ergodicity and hybrid Markov chains", ECP 1997.)
- If CLT holds, then have 95% confidence interval $(e-1.96 \sqrt{v}, e+1.96 \sqrt{v})$.
- So what do we know about ergodicity?
- Theorem (later): if chain is irreducible and aperiodic and $\Pi(\cdot)$ is stationary, then chain is ergodic.
- What about convergence rates of independence sampler?
- By Thm, independence sampler is ergodic provided $q(x)>0$ whenever $\pi(x)>0$.
- But is that sufficient?
- No, e.g. previous "Rind" example with $k=5$: ergodic (of course), but not geometrically ergodic, CLT does not hold, confidence intervals often miss 1. (file "Rind2")
- FACT: independence sampler is geometrically ergodic IF AND ONLY IF there is $\delta>0$ such that $q(x) \geq \delta \pi(x)$ for π-a.e. $x \in \mathcal{X}$, in which case $D(x, n) \leq(1-\delta)^{n}$ for π-a.e. $x \in \mathcal{X}$.
- So, if $\pi(x)=e^{-x}$ and $q(x)=k e^{-k x}$ for $x>0$, where $0<k \leq 1$, then can take $\delta=k$, so $D(x, n) \leq(1-k)^{n}$.
- e.g. if $k=0.01$, then $D(x, 459) \leq(0.99)^{459} \doteq 0.0099<0.01$ for all $x>0$, i.e. "converges" after 459 iterations.
- But if $k>1$, then not geometrically ergodic.
- Fact: if $k=5$, then $D(0, n)>0.01$ for all $n \leq 4,000,000$, while $D(0, n)<$ 0.01 for all $n \geq 14,000,000$, i.e. "convergence" takes between 4 million and 14 million iterations. Slow! [Roberts and Rosenthal, "Quantitative Non-Geometric Convergence Bounds for Independence Samplers", MCAP 2011.]
- What about other chains (besides independence sampler)? (Coming soon!)

VARIABLE-AT-A-TIME MCMC:

- Propose to move just one coordinate at a time, leaving all the other coordinates fixed (since changing all coordinates at once may be difficult).
- e.g. proposal Y_{n} has $Y_{n, i} \sim N\left(X_{n-1, i}, \sigma^{2}\right)$, with $Y_{n, j}=X_{n-1, j}$ for $j \neq i$.
- (Here $Y_{n, i}$ is the $i^{\text {th }}$ coordinate of $\left.Y_{n}.\right)$
- Then accept/reject with usual Metropolis rule (symmetric case: "Metropolis-withinGibbs") or Metropolis-Hastings rule (general case: "Metropolis-Hastings-within-Gibbs").
- Need to choose which coordinate to update each time ..
- Could choose coordinates in sequence $1,2, \ldots, d, 1,2, \ldots$ ("systematic-scan").
- Or, choose coordinate $\sim \operatorname{Uniform}\{1,2, \ldots, d\}$ each time ("random-scan").
- Note: one systematic-scan iteration corresponds to d random-scan ones ...
- EXAMPLE: again $\pi\left(x_{1}, x_{2}\right)=C\left|\cos \left(\sqrt{x_{1} x_{2}}\right)\right| I\left(0 \leq x_{1} \leq 5,0 \leq x_{2} \leq 4\right)$, and $h\left(x_{1}, x_{2}\right)=e^{x_{1}}+\left(x_{2}\right)^{2}$. (Recall: Mathematica gives $\mathbf{E}_{\pi}(h) \doteq 38.7044$.)
- Works with systematic-scan (file "Rmwg") or random-scan (file "Rmwg2").

- GIBBS SAMPLER:

- (Special case of Metropolis-Hastings-within-Gibbs - later.)
- Proposal distribution for $i^{\text {th }}$ coordinate is equal to the conditional distribution of that coordinate (according to π), conditional on the current values of all the other coordinates.
- Then, always accept. (Reason later.)
- Can use either systematic or random scan, just like above.

END WEDNESDAY \#4

- EXAMPLE: Variance Components Model:
- Update of μ (say) should be from conditional density of μ, conditional on current values of all the other coordinates: $\mathcal{L}\left(\mu \mid V, W, \theta_{1}, \ldots, \theta_{K}, Y_{11}, \ldots, Y_{J_{K} K}\right)$.
- This conditional density is proportional to the full joint density, but with everything except μ treated as constant.
- Recall: full joint density is:

$$
\begin{gathered}
=C e^{-b_{1} / V} V^{-a_{1}-1} e^{-b_{2} / W} W^{-a_{2}-1} e^{-\left(\mu-a_{3}\right)^{2} / 2 b_{3}} V^{-K / 2} W^{-\frac{1}{2} \sum_{i=1}^{K} J_{i}} \times \\
\times \exp \left[-\sum_{i=1}^{K}\left(\theta_{i}-\mu\right)^{2} / 2 V-\sum_{i=1}^{K} \sum_{j=1}^{J_{i}}\left(Y_{i j}-\theta_{i}\right)^{2} / 2 W\right] .
\end{gathered}
$$

- So, conditional density of μ is

$$
C_{2} e^{-\left(\mu-a_{3}\right)^{2} / 2 b_{3}} \exp \left[-\sum_{i=1}^{K}\left(\theta_{i}-\mu\right)^{2} / 2 V\right]
$$

- This equals (verify this! HW!)

$$
C_{3} \exp \left(-\mu^{2}\left(\frac{1}{2 b_{3}}+\frac{K}{2 V}\right)+\mu\left(\frac{a_{3}}{b_{3}}+\frac{1}{V} \sum_{i=1}^{K} \theta_{i}\right)\right)
$$

- Side calculation: if $\mu \sim N(m, v)$, then density $\propto e^{-(\mu-m)^{2} / 2 v} \propto e^{-\mu^{2}(1 / 2 v)+\mu(m / v)}$.
- Hence, here $\mu \sim N(m, v)$, where $1 / 2 v=\frac{1}{2 b_{3}}+\frac{K}{2 V}$ and $m / v=\frac{a_{3}}{b_{3}}+\frac{1}{V} \sum_{i=1}^{K} \theta_{i}$.
- Solve: $v=b_{3} V /\left(V+K b_{3}\right)$, and $m=\left(a_{3} V+b_{3} \sum_{i=1}^{K} \theta_{i}\right) /\left(V+K b_{3}\right)$.
- $\underline{\text { So }}$, in Gibbs Sampler, each time μ is updated, we sample it from $N(m, v)$ for this m and v (and always accept).
- Similarly (HW!), conditional distribution for V is:

$$
C_{4} e^{-b_{1} / V} V^{-a_{1}-1} V^{-K / 2} \exp \left[-\sum_{i=1}^{K}\left(\theta_{i}-\mu\right)^{2} / 2 V\right], \quad V>0
$$

- Recall that " $I G(r, s)$ " has density $\frac{s^{r}}{\Gamma(r)} e^{-s / x} x^{-r-1}$ for $x>0$.
- So, conditional distribution for V equals $I G\left(a_{1}+K / 2, b_{1}+\frac{1}{2} \sum_{i=1}^{K}\left(\theta_{i}-\mu\right)^{2}\right)$.
- Can similar compute conditional distributions for W and θ_{i} (HW).
- So, in this case, the systematic-scan Gibbs sampler proceeds (HW) by:
- Update V from its conditional distribution $I G(\ldots, \ldots)$.
- Update W from its conditional distribution $I G(\ldots, \ldots)$.
- Update μ from its conditional distribution $N(\ldots, \ldots)$.
- Update θ_{i} from its conditional distribution $N(\ldots, \ldots)$, for $i=1,2, \ldots, K$.
- Repeat all of the above M times.
- Or, the random-scan Gibbs sampler proceeds by choosing one of $V, W, \mu, \theta_{1}, \ldots, \theta_{K}$ uniformly at random, and then updating that coordinate from its corresponding conditional distribution.
- Then repeat this step M times [or $M(K+3)$ times?].

MCMC CONVERGENCE RATES, PART II:

- FACT: if state space is finite, and chain is irreducible and aperiodic, then always geometrically ergodic.
- What about for "random-walk Metropolis algorithm" (RWM), i.e. where $\left\{Y_{n}-X_{n-1}\right\} \sim$ q for some fixed symmetric density q ?

$$
- \text { e.g. } Y_{n} \sim N\left(X_{n-1}, \sigma^{2} I\right), \text { or } Y_{n} \sim \operatorname{Uniform}\left[X_{n-1}-\delta, X_{n-1}+\delta\right] .
$$

- FACT: RWM is geometrically ergodic essentially if and only if π has exponential tails, i.e. there are $a, b, c>0$ such that $\pi(x) \leq a e^{-b|x|}$ whenever $|x|>c$. (Requires a few technical conditions: π and q continuous and positive; q has finite first moment; and π non-increasing in the tails, with (in higher dims) bounded Gaussian curvature.) [Mengersen and Tweedie, Ann Stat 1996; Roberts and Tweedie, Biometrika 1996]
- EXAMPLES: RWM on \mathbf{R} with usual proposals: $Y_{n} \sim N\left(X_{n-1}, \sigma^{2}\right)$.
- CASE $\# 1: \Pi=N\left(5,4^{2}\right)$, and functional $h(y)=y^{2}$, so $\mathbf{E}_{\pi}(h)=5^{2}+4^{2}=41$. (file "Rnorm" ... $\sigma=1$ v. $\sigma=4$ v. $\sigma=16$)
- Does CLT hold? Yes! (geometrically ergodic, and $\mathbf{E}_{\pi}\left(|h|^{p}\right)<\infty$ for all p.)
- Indeed, confidence intervals "usually" contain 41. (file "Rnorm2")
$-\operatorname{CASE} \# 2: \pi(y)=c \frac{1}{\left(1+y^{4}\right)}$, and functional $h(y)=y^{2}$, so

$$
\mathbf{E}_{\pi}(h)=\frac{\int_{-\infty}^{\infty} y^{2} \frac{1}{\left(1+y^{4}\right)} d y}{\int_{-\infty}^{\infty} \frac{1}{\left(1+y^{4}\right)} d y}=\frac{\pi / \sqrt{2}}{\pi / \sqrt{2}}=1
$$

- Not exponential tails, so no CLT; estimates less stable, confidence intervals often miss 1. (file "Rheavy")

END FRIDAY \#4

- CASE $\# 3: \pi(y)=\frac{1}{\pi\left(1+y^{2}\right)}$ (Cauchy), and functional $h(y)=\mathbf{1}_{-10<y<10}$, so $\mathbf{E}_{\pi}(h)=\Pi(|X|<10)=2 \arctan (10) / \pi=0.93655 .[\Pi(0<X<x)=\arctan (x) / \pi]$
- Not geometrically ergodic.
- Confidence intervals often miss 0.93655. (file "Rcauchy")
- CASE \#4: $\pi(y)=\frac{1}{\pi\left(1+y^{2}\right)}$ (Cauchy), and functional $h(y)=\min \left(y^{2}, 100\right)$. [Numerical integration: $\left.\mathbf{E}_{\pi}(h) \doteq 11.77\right]$
- Again, not geometrically ergodic, and 95% CI often miss 11.77, though iid MC does better. (file "Rcauchy2")
- NOTE: Even when CLT holds, it's rather unstable, e.g. requires that chain has converged to Π, and might underestimate v.
- So, estimate of v is very important!
- "varfact" not always reliable?
- Repeated runs!
- Another approach is "batch means", whereby chain is broken into m large "batches", which are assumed to be approximately i.i.d.,

SO WHY DOES MCMC WORK?:

- (Need Markov chain theory ... STA447/2006 ... already know?)
- Basic fact: if a Markov chain is "irreducible" and "aperiodic", with "stationarity distribution" π, then $\mathcal{L}\left(X_{n}\right) \rightarrow \pi$ as $n \rightarrow \infty$. More precisely \ldots
- THEOREM: If Markov chain is irreducible, with stationarity probability density π, then for π-a.e. initial value $X_{0}=x$,
(a) if $\mathbf{E}_{\pi}(|h|)<\infty$, then $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)=\mathbf{E}_{\pi}(h) \equiv \int h(x) \pi(x) d x$; and
(b) if chain aperiodic, then also $\lim _{n \rightarrow \infty} \mathbf{P}\left(X_{n} \in S\right)=\int_{S} \pi(x) d x$ for all $S \subseteq \mathcal{X}$.
- Let's figure out what this all means...
- Notation: $P(i, j)=\mathbf{P}\left(X_{n+1}=j \mid X_{n}=i\right)$ (discrete case), or $P(x, A)=\mathbf{P}\left(X_{n+1} \in\right.$ $\left.A \mid X_{n}=x\right)$ (general case). Also $\Pi(A)=\int_{A} \pi(x) d x$.
- Well, irreducible means that you have positive probability of eventually getting from anywhere to anywhere else.
- Discrete case: for all $i, j \in \mathcal{X}$ there is $n \in \mathbf{N}$ such that $P\left(X_{n}=j \mid X_{0}=i\right)>0$. (discrete case)
- General case: for all $x \in \mathcal{X}$, and for all $A \subseteq \mathcal{X}$ with $\Pi(A)>0$, there is $n \in \mathbf{N}$ such that $P\left(X_{n} \in A \mid X_{0}=x\right)>0$.
- Usually satisfied for MCMC.
- And, aperiodic means there are no forced cycles, i.e. there do not exist disjoint nonempty subsets $\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{d}$ for $d \geq 2$, such that $P\left(x, \mathcal{X}_{i+1}\right)=1$ for all $x \in \mathcal{X}_{i}$ $(1 \leq i \leq d-1)$, and $P\left(x, \mathcal{X}_{1}\right)=1$ for all $x \in \mathcal{X}_{d}$. (Diagram.)
- This is true for virtually any Metropolis algorithm, e.g. it's true if $P(x,\{x\})>0$ for any one state $x \in \mathcal{X}$, e.g. if positive prob of rejection.
- Also true if $P(x, \cdot)$ has positive density throughout S, for all $x \in S$, for some $S \subseteq \mathcal{X}$ with $\Pi(S)>0$.
- Not quite guaranteed, e.g. $\mathcal{X}=\{0,1,2,3\}$, and π uniform on \mathcal{X}, and $Y_{n}=$ $X_{n-1} \pm 1(\bmod 4)$. But almost always holds.
- What about Π being a stationary distribution??
- Begin with DISCRETE CASE (e.g. rwm.html).
- Assume for simplicity that $\pi(x)>0$ for all $x \in \mathcal{X}$.
- Let $q(x, y)=\mathbf{P}\left(Y_{n}=y \mid X_{n-1}=x\right)$ be proposal distribution, e.g. $q(x, x+1)=$ $q(x, x-1)=1 / 2$. Always chosen to be symmetric, i.e. $q(x, y)=q(y, x)$.
- Acceptance probability is $\min \left(1, \frac{\pi(y)}{\pi(x)}\right)$.
- State space is \mathcal{X}, e.g. $\mathcal{X} \equiv\{1,2,3,4,5,6\}$.
- Then, for $i, j \in \mathcal{X}$ with $i \neq j$,

$$
P(i, j)=q(i, j) \min \left(1, \frac{\pi(j)}{\pi(i)}\right)
$$

- Follows that chain is "reversible": for all $i, j \in \mathcal{X}$, by symmetry,

$$
\pi(i) P(i, j)=q(i, j) \min (\pi(i), \pi(j))=q(j, i) \min (\pi(i), \pi(j))=\pi(j) P(j, i)
$$

- (Intuition: if $X_{0} \sim \pi$, i.e. $\mathbf{P}\left(X_{0}=i\right)=\pi(i)$ for all $i \in \mathcal{X}$, then $\mathbf{P}\left(X_{0}=i, X_{1}=\right.$ $j)=\mathbf{P}\left(X_{0}=j, X_{1}=i\right) \ldots$ "time reversible" $\left.\ldots\right)$
- We then compute that if $X_{0} \sim \pi$, i.e. that $\mathbf{P}\left(X_{0}=i\right)=\Pi(i)$ for all $i \in \mathcal{X}$, then:

$$
\mathbf{P}\left(X_{1}=j\right)=\sum_{i \in \mathcal{X}} \mathbf{P}\left(X_{0}=i\right) P(i, j)=\sum_{i \in \mathcal{X}} \pi(i) P(i, j)=\sum_{i \in \mathcal{X}} \pi(j) P(j, i)
$$

$$
=\pi(j) \sum_{i \in \mathcal{X}} P(j, i)=\pi(j),
$$

i.e. $X_{1} \sim \pi$ too!

- So, the Markov chain "preserves" π, i.e. π is a stationary distribution.
- This is true for any Metropolis algorithm!
- It then follows from the Theorem (i.e., "Basic Fact") that as $n \rightarrow \infty, \mathcal{L}\left(X_{n}\right) \rightarrow \pi$, i.e. $\lim _{n \rightarrow \infty} P\left(X_{n}=i\right)=\pi(i)$ for all $i \in \mathcal{X}$. (file "rwm.html")
- Also follows that if $\mathbf{E}_{\pi}(|h|)<\infty$, then $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)=\mathbf{E}_{\pi}(h) \equiv \int h(x) \pi(x) d x$. ("LLN")

- SO WHAT ABOUT THE MORE GENERAL, CONTINUOUS CASE?

- Some notation:
- Let \mathcal{X} be the state space of all possible values. (Usually $\mathcal{X} \subseteq \mathbf{R}^{d}$, e.g. for Variance Components Model, $\mathcal{X}=(0, \infty) \times(0, \infty) \times \mathbf{R} \times \mathbf{R}^{K} \subseteq \mathbf{R}^{K+3}$.)
- Let $q(x, y)$ be the proposal density for y given x. (So, in above case, $q(x, y)=$ $(2 \pi \sigma)^{-d / 2} \exp \left(-\sum_{i=1}^{d}\left(y_{i}-x_{i}\right)^{2} / 2 \sigma^{2}\right)$.) Symmetric: $q(x, y)=q(y, x)$.
- Let $\alpha(x, y)$ be probability of accepting a proposed move from x to y, i.e.

$$
\alpha(x, y)=\mathbf{P}\left(U_{n}<A_{n} \mid X_{n-1}=x, Y_{n}=y\right)=\mathbf{P}\left(U_{n}<\frac{\pi(y)}{\pi(x)}\right)=\min \left[1, \frac{\pi(y)}{\pi(x)}\right] .
$$

- Let $P(x, S)=\mathbf{P}\left(X_{1} \in S \mid X_{0}=x\right)$ be the transition probabilities.
- Then if $x \notin S$, then

$$
P(x, S)=\mathbf{P}\left(Y_{1} \in S, U_{1}<A_{1} \mid X_{0}=x\right)=\int_{S} q(x, y) \min [1, \pi(y) / \pi(x)] d y
$$

- Shorthand: for $x \neq y, P(x, d y)=q(x, y) \min [1, \pi(y) / \pi(x)] d y$.
- Then for $x \neq y, P(x, d y) \pi(x) d x=q(x, y) \min [1, \pi(y) / \pi(x)] d y \pi(x) d x=$ $q(x, y) \min [\pi(x), \pi(y)] d y d x=P(y, d x) \pi(y) d y$. (symmetric)
- Follows that $P(x, d y) \pi(x) d x=P(y, d x) \pi(y) d y$ for all $x, y \in \mathcal{X}$. ("reversible")
- Shorthand: $P(x, d y) \Pi(d x)=P(y, d x) \Pi(d y)$.
- How does "reversible" help?
- Well, suppose $X_{0} \sim \Pi$, i.e. we "start in stationarity". Then

$$
\begin{aligned}
\mathbf{P}\left(X_{1} \in S\right) & =\int_{x \in \mathcal{X}} \mathbf{P}\left(X_{1} \in S \mid X_{0}=x\right) \pi(x) d x=\int_{x \in \mathcal{X}} \int_{y \in S} P(x, d y) \pi(x) d x \\
& =\int_{x \in \mathcal{X}} \int_{y \in S} P(y, d x) \pi(y) d y=\int_{y \in S} \pi(y) d y \equiv \Pi(S),
\end{aligned}
$$

so also $X_{1} \sim \pi$. So, chain "preserves" π, i.e. π is stationary distribution.

- So, again, the Theorem applies.
- Note: key facts about $q(x, y)$ are symmetry, and irreducibility.
- So, could replace $Y_{n} \sim N(0,1)$ by e.g. $Y_{n} \sim \operatorname{Uniform}\left[X_{n-1}-1, X_{n-1}+1\right]$, or (on discrete space) $Y_{n}=X_{n-1} \pm 1$ with prob. $\frac{1}{2}$ each, etc.

METROPOLIS-HASTINGS ALGORITHMS:

- (Hastings [Canadian!], Biometrika 1970; see www.probability.ca/hastings)
- Now that we understand the theory, we can consider more general algorithms too ...
- Previous Metropolis algorithm works provided proposal distribution is symmetric, i.e. $q(x, y)=q(y, x)$. But what if it isn't?
- For Metropolis, key was that $q(x, y) \alpha(x, y) \pi(x)$ was symmetric (to make the Markov chain be reversible).
- If instead $A_{n}=\frac{\pi\left(Y_{n}\right) q\left(Y_{n}, X_{n-1}\right)}{\pi\left(X_{n-1}\right) q\left(X_{n-1}, Y_{n}\right)}$, i.e. acceptance prob. $\equiv \alpha(x, y)=\min \left[1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right]$, then:

$$
q(x, y) \alpha(x, y) \pi(x)=q(x, y) \min \left[1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right] \pi(x)=\min [\pi(x) q(x, y), \pi(y) q(y, x)] .
$$

So, still symmetric, even if q wasn't.

- So, for Metropolis-Hastings algorithm, replace " $A_{n}=\pi\left(Y_{n}\right) / \pi\left(X_{n-1}\right)$ " by $A_{n}=$ $\frac{\pi\left(Y_{n}\right) q\left(Y_{n}, X_{n-1}\right)}{\pi\left(X_{n-1}\right) q\left(X_{n-1}, Y_{n}\right)}$, then still reversible, and everything else remains the same.
- i.e., still accept if $U_{n}<A_{n}$, otherwise reject.
- (Intuition: if $q(x, y) \gg q(y, x)$, then Metropolis chain would spend too much time at y and not enough at x, so need to accept fewer moves $x \rightarrow y$.)
- Do require that $q(x, y)>0$ iff $q(y, x)>0$.
- INDEPENDENCE SAMPLER (mentioned earlier):
- Proposals $\left\{Y_{n}\right\}$ i.i.d. from some fixed distribution (say, $Y_{n} \sim M V N(0, I)$).
- Another special case of Metropolis-Hastings algorithm.
- Then $q(x, y)=q(y)$, depends only on y.
- So, now $A_{n}=\frac{\pi\left(Y_{n}\right) q\left(X_{n-1}\right)}{\pi\left(X_{n-1}\right) q\left(Y_{n}\right)}$. (files "Rind", "Rind2" from before)

END WEDNESDAY \#5

- GIBBS SAMPLER (mentioned earlier):
- Special case of Metropolis-Hastings-within-Gibbs.
- Proposal distribution for $i^{\text {th }}$ coordinate is equal to the conditional distribution of that coordinate (according to π), conditional on the current values of all the other coordinates.
- That is, $q_{i}(x, y)=C\left(x^{(-i)}\right) \pi(y)$ whenever $x^{(-i)}=y^{(-i)}$, where $x^{(-i)}$ means all coordinates except the $i^{\text {th }}$ one.
- Here $C\left(x^{(-i)}\right)$ is the appropriate normalising constant (which depends on $x^{(-i)}$). (So $C\left(x^{(-i)}\right)=C\left(y^{(-i)}\right)$.)
- Then $A_{n}=\frac{\pi\left(Y_{n}\right) q_{i}\left(Y_{n}, X_{n-1}\right)}{\pi\left(X_{n-1}\right) q_{i}\left(X_{n-1}, Y_{n}\right)}=\frac{\pi\left(Y_{n}\right) C\left(Y_{n}^{(-i)}\right) \pi\left(X_{n-1}\right)}{\pi\left(X_{n-1}\right) C\left(X_{n-1}^{(-i)}\right) \pi\left(Y_{n}\right)}=1$.
- So, always accept.

- LANGEVIN ALGORITHM:

$-Y_{n} \sim \operatorname{MVN}\left(X_{n-1}+\frac{1}{2} \sigma^{2} \nabla \log \pi\left(X_{n-1}\right), \sigma^{2} I\right)$.

- Special case of Metropolis-Hastings algorithm.
- Intuition: tries to move in direction where π increasing.
- Based on discrete approximation to Langevin diffusion.
- Usually more efficient, but requires knowledge and computation of $\nabla \log \pi$. (Hard.)
- EXAMPLE: again $\pi\left(x_{1}, x_{2}\right)=C\left|\cos \left(\sqrt{x_{1} x_{2}}\right)\right| I\left(0 \leq x_{1} \leq 5,0 \leq x_{2} \leq 4\right)$, and $h\left(x_{1}, x_{2}\right)=e^{x_{1}}+\left(x_{2}\right)^{2}$. (Recall: Mathematica gives $\mathbf{E}_{\pi}(h) \doteq 38.7044$.)
- Proposal distribution: $Y_{n} \sim M V N\left(X_{n-1}, \sigma^{2}\left(1+\left|X_{n-1}\right|^{2}\right)^{2} I\right)$.
- (Intuition: larger proposal variance if farther from center.)
- So, $q(x, y)=C\left(1+|x|^{2}\right)^{-2} \exp \left(-|y-x|^{2} / 2 \sigma^{2}\left(1+|x|^{2}\right)^{2}\right)$.
- So, can run Metropolis-Hastings algorithm for this example. (file "RMH")
- Usually get between 34 and 43, with claimed standard error ≈ 2. (Recall: Mathematica gets 38.7044.)

EXAMPLES RE WHY DOES MCMC WORK:

- EXAMPLE \#1: Metropolis algorithm where $\mathcal{X}=\mathbf{Z}, \pi(x)=2^{-|x|} / 3$, and $q(x, y)=\frac{1}{2}$ if $|x-y|=1$, otherwise 0 .
- Reversible? Yes, it's a Metropolis algorithm!
$-\pi$ stationary? Yes, follows from reversibility!
- Aperiodic? Yes, since $P(x,\{x\})>0$!
- Irreducible? Yes: $\pi(x)>0$ for all $x \in \mathcal{X}$, so can get from x to y in $|x-y|$ steps.
- So, by theorem, probabilities and expectations converge to those of π - good.
- EXAMPLE $\# 2$: Same as $\# 1$, except now $\pi(x)=2^{-|x|-1}$ for $x \neq 0$, with $\pi(0)=0$.
- Still reversible, π stationary, aperiodic, same as before.
- Irreducible? No - can't go from positive to negative!
- EXAMPLE \#3: Same as $\# 2$, except now $q(x, y)=\frac{1}{4}$ if $1 \leq|x-y| \leq 2$, otherwise 0 .
- Still reversible, π stationary, aperiodic, same as before.
- Irreducible? Yes - can "jump over 0" to get from positive to negative, and back!

END FRIDAY \#5

- EXAMPLE \#4: Metropolis algorithm with $\mathcal{X}=\mathbf{R}$, and $\pi(x)=C e^{-x^{6}}$, and proposals $Y_{n} \sim \operatorname{Uniform}\left[X_{n-1}-1, X_{n-1}+1\right]$.
- Reversible? Yes since $q(x, y)$ still symmetric.
$-\pi$ stationary? Yes since reversible!
- Irreducible? Yes since $P^{n}(x, d y)$ has positive density whenever $|y-x| \leq n$.
- Aperiodic? Yes since if periodic, then if e.g. $\mathcal{X}_{1} \cap[0,1]$ has positive measure, then possible to go from \mathcal{X}_{1} directly to \mathcal{X}_{1}, i.e. if $x \in \mathcal{X}_{1} \cap[0,1]$, then $P\left(x, \mathcal{X}_{1}\right)>0$. (Or, even simpler: since $P(x,\{x\})>0$ for all $x \in \mathcal{X}$.)
- So, by theorem, probabilities and expectations converge to those of π - good.
- EXAMPLE \#5: Same as $\# 4$, except now $\pi(x)=C_{1} e^{-x^{6}}\left(\mathbf{1}_{x<2}+\mathbf{1}_{x>4}\right)$.
- Still reversible and stationary and aperiodic, same as before.
- But no longer irreducible: cannot jump from $[4, \infty)$ to $(-\infty, 2]$ or back.
- So, does not converge.
- EXAMPLE \#6: Same as $\# 5$, except now proposals are $Y_{n} \sim$ Uniform $\left[X_{n-1}-\right.$ $\left.5, X_{n-1}+5\right]$.
- Still reversible and stationary and aperiodic, same as before.
- And now irreducible, too: now can jump from $[4, \infty)$ to $(-\infty, 2]$ or back.
- EXAMPLE \#7: Same as $\# 6$, except now $Y_{n} \sim \operatorname{Uniform}\left[X_{n-1}-5, X_{n-1}+10\right]$.
- Makes no sense - proposals not symmetric, so not a Metropolis algorithm!
- (Not even symmetrically zero, for a Metropolis-Hastings algorithm.)

OPTIMAL RWM PROPOSALS:

- Consider RWM on $\mathcal{X}=\mathbf{R}^{d}$, where $Y_{n} \sim \operatorname{MVN}\left(X_{n-1}, \Sigma\right)$ for some $d \times d$ proposal covariance matrix Σ.
- What is best choice of Σ ?
- Usually we take $\Sigma=\sigma^{2} I_{d}$ for some $\sigma>0$, and then choose σ so acceptance rate not too small, not too large (e.g. 0.234).
- But can we do better?
- Suppose for now that $\Pi=\operatorname{MVN}\left(\mu_{0}, \Sigma_{0}\right)$ for some fixed μ_{0} and Σ_{0}, in dim=5. Try RWM with various proposal distributions (file "Ropt"):
- first version: $Y_{n} \sim \operatorname{MVN}\left(X_{n-1}, I_{d}\right) .($ acc $\approx 0.06 ;$ varfact $\approx 220)$
- second version: $Y_{n} \sim \operatorname{MVN}\left(X_{n-1}, 0.1 I_{d}\right) .($ acc $\approx 0.234 ; \quad$ varfact $\approx 300)$
- third version: $Y_{n} \sim \operatorname{MVN}\left(X_{n-1}, \Sigma_{0}\right) .($ acc $\approx 0.31 ; \quad$ varfact $\approx 15)$
- fourth version: $Y_{n} \sim \operatorname{MVN}\left(X_{n-1}, 1.4 \Sigma_{0}\right) .($ acc $\approx 0.234 ; \quad$ varfact $\approx 7)$
- Or in $\operatorname{dim}=20$ (file "Ropt2", with file "targ20"):
$-Y_{n} \sim \operatorname{MVN}\left(X_{n-1}, 0.025 I_{d}\right) .($ acc $\approx 0.234 ;$ varfact ≈ 400 or more $)$
$-Y_{n} \sim \operatorname{MVN}\left(X_{n-1}, 0.283 \Sigma_{0}\right) .($ acc $\approx 0.234 ;$ varfact $\approx 50)$
- Conclusion: acceptance rates near 0.234 are better.
- But also, proposals shaped like the target are better.
- This has been proved for targets which are orthogonal transformations of independent components (Roberts et al., Ann Appl Prob 1997; Roberts and Rosenthal, Stat Sci 2001; Bédard, Ann Appl Prob 2007).
- Is "approximately" true for most unimodal targets ...
- Problem: Σ_{0} would usually be unknown; then what?
- Can perhaps "adapt"!

ADAPTIVE MCMC:

- What if target covariance Σ_{0} is unknown??
- Can estimate target covariance based on run so far, to get empirical covariance Σ_{n}.
- Then update proposal covariance "on the fly", by using proposal $Y_{n} \sim \operatorname{MVN}\left(X_{n-1}, \Sigma_{n}\right)$ $\left[\right.$ or $Y_{n} \sim \operatorname{MVN}\left(X_{n-1}, 1.4 \Sigma_{n}\right)$, or $\left.Y_{n} \sim \operatorname{MVN}\left(X_{n-1},\left((2.38)^{2} / d\right) \Sigma_{n}\right)\right]$.
- Hope that for large $n, \Sigma_{n} \approx \Sigma_{0}$, so proposals "nearly" optimal.
- (Usually also add ϵI_{d} to proposal covariance, to improve stability, e.g. $\epsilon=0.05$.)
- Try R version, for the same MVN example as in Ropt (file "Radapt"):
- Need much longer burn-in, e.g. $B=20,000$, for adaption to work.
- Get varfact of last 4000 iterations of about $18 \ldots$ "competitive" with Ropt optimal...
- The longer the run, the more benefit from adaptation.
- Can also compute "slow-down factor", $s_{n} \equiv d\left(\sum_{i=1}^{d} \lambda_{i n}^{-2} /\left(\sum_{i=1}^{d} \lambda_{i n}^{-1}\right)^{2}\right)$, where $\left\{\lambda_{i n}\right\}$ eigenvals of $\Sigma_{n}^{1 / 2} \Sigma_{0}^{-1 / 2}$. Starts large, should converge to 1. [Motivation: if $\Sigma_{n}=\Sigma_{0}$, then $\lambda_{\text {in }} \equiv 1$, so $s_{n}=d\left(d / d^{2}\right) \equiv 1$.]
- Higher dimensions: figure "plotAMx200.png" (dim=200).
- Works well, but it takes many iterations before the adaption is helpful.
- BUT IS "ADAPTIVE MCMC" A VALID ALGORITHM??
- Not in general: see e.g. "adapt.html"
- Algorithm now non-Markovian, doesn't preserve stationarity at each step.
- However, still converges to Π provided that the adaption (i) is "diminishing" and (ii) satisfies a technical condition called "containment".
- For details see e.g. Roberts \& Rosenthal, "Coupling and Convergence of Adaptive MCMC" (J. Appl. Prob. 2007).

TEMPERED MCMC:

- Suppose $\Pi(\cdot)$ is multi-modal, i.e. has distinct "parts" (e.g., $\left.\Pi=\frac{1}{2} N(0,1)+\frac{1}{2} N(20,1)\right)$
- Usual RWM with $Y_{n} \sim N\left(X_{n-1}, 1\right)$ (say) can explore well within each mode, but how to get from one mode to the other?
- Idea: if $\Pi(\cdot)$ were flatter, e.g. $\frac{1}{2} N\left(0,10^{2}\right)+\frac{1}{2} N\left(20,10^{2}\right)$, then much easier to get between modes.
- So: define a sequence $\Pi_{1}, \Pi_{2}, \ldots, \Pi_{m}$ where $\Pi_{1}=\Pi$ ("cold"), and Π_{τ} is flatter for larger τ ("hot"). (e.g. $\Pi_{\tau}=\frac{1}{2} N\left(0, \tau^{2}\right)+\frac{1}{2} N\left(20, \tau^{2}\right)$; file "Rtempered")
- Then define joint Markov chain (x, τ) on $\mathcal{X} \times\{1,2, \ldots, m\}$. (How?)
- In the end, only "count" those samples where $\tau=1$.

END WEDNESDAY \#6

- Then define joint Markov chain (x, τ) on $\mathcal{X} \times\{1,2, \ldots, m\}$, with stationary distribution $\bar{\Pi}$ defined by $\bar{\Pi}(S \times\{\tau\})=\frac{1}{m} \Pi_{\tau}(S)$.
- (Can also use other weights besides $\frac{1}{m}$.)
- Define new Markov chain with both spatial moves (change x) and temperature moves (change τ).
- e.g. perhaps chain alternates between:
(a) propose $x^{\prime} \sim N(x, 1)$, accept with prob $\min \left(1, \frac{\bar{\pi}\left(x^{\prime}, \tau\right)}{\bar{\pi}(x, \tau)}\right)=\min \left(1, \frac{\pi_{\tau}\left(x^{\prime}\right)}{\pi_{\tau}(x)}\right)$.
(b) propose $\tau^{\prime}=\tau \pm 1$ (prob $\frac{1}{2}$ each), accept with prob $\min \left(1, \frac{\bar{\pi}\left(x, \tau^{\prime}\right)}{\bar{\pi}(x, \tau)}\right)=\min \left(1, \frac{\pi_{\tau^{\prime}}(x)}{\pi_{\tau}(x)}\right)$.
- Chain should converge to $\bar{\Pi}$.
- In the end, only "count" those samples where $\tau=1$.
- EXAMPLE: $\Pi=\frac{1}{2} N(0,1)+\frac{1}{2} N(20,1)$
- Assume proposals are $Y_{n} \sim N\left(X_{n-1}, 1\right)$.
- Mixing for Π : terrible! (file "Rtempered" with dotempering=FALSE and temp=1; note the small claimed standard error!)
- Define $\Pi_{\tau}=\frac{1}{2} N\left(0, \tau^{2}\right)+\frac{1}{2} N\left(20, \tau^{2}\right)$, for $\tau=1,2, \ldots, 10$.
- Mixing better for larger τ ! (file "Rtempered" with dotempering=FALSE and temp $=1,2,3,4, \ldots, 10$)
- (Compare graphs of π_{1} and π_{10} : plot commands at bottom of "Rtempered" ...)
- So, use above"(a)-(b)" algorithm; converges fairly well to $\bar{\Pi}$. (file "Rtempered", with dotempering=TRUE)
- So, conditional on $\tau=1$, converges to Π. ("points" command at end of file "Rtempered")
- So, average of those $h(x)$ with $\tau=1$ gives good estimate of $\mathbf{E}_{\pi}(h)$.

- HOW TO FIND THE TEMPERED DENSITIES π_{τ} ?

- Usually won't "know" about e.g. $\Pi_{\tau}=\frac{1}{2} N\left(0, \tau^{2}\right)+\frac{1}{2} N\left(20, \tau^{2}\right)$.
- Instead, can e.g. let $\pi_{\tau}(x)=c_{\tau}(\pi(x))^{1 / \tau}$. (Sometimes write $\beta=1 / \tau$.)
- Then $\Pi_{1}=\Pi$, and π_{τ} flatter for larger τ - good.
- (e.g. if $\pi(x)$ density of $N\left(\mu, \sigma^{2}\right)$, then $c_{\tau}(\pi(x))^{1 / \tau}$ density of $N\left(\mu, \tau \sigma^{2}\right)$.)
- Then temperature acceptance probability is:

$$
\min \left(1, \frac{\pi_{\tau^{\prime}}(x)}{\pi_{\tau}(x)}\right)=\min \left(1, \frac{c_{\tau^{\prime}}}{c_{\tau}}(\pi(x))^{\left(1 / \tau^{\prime}\right)-(1 / \tau)}\right)
$$

- This depends on the c_{τ}, which are usually unknown - bad.
- What to do?

- PARALLEL TEMPERING:

- (a.k.a. Metropolis-Coupled MCMC, or MCMCMC)
- Alternative to tempered MCMC.
- Instead, use state space \mathcal{X}^{m}, with m chains, i.e. one chain for each temperature.
- So, state at time n is $X_{n}=\left(X_{n 1}, X_{n 2}, \ldots, X_{n m}\right)$, where $X_{n \tau}$ is "at" temperature τ.
- Stationary distribution is now $\bar{\Pi}=\Pi_{1} \times \Pi_{2} \times \ldots \times \Pi_{m}$, i.e. $\bar{\Pi}\left(X_{1} \in S_{1}, X_{2} \in\right.$ $\left.S_{2}, \ldots, X_{m} \in S_{m}\right)=\Pi_{1}\left(S_{1}\right) \Pi_{2}\left(S_{2}\right) \ldots \Pi_{m}\left(S_{m}\right)$.
- Then, can update the chain $X_{n-1, \tau}$ at temperature τ (for each $1 \leq \tau \leq m$), by proposing e.g. $Y_{n, \tau} \sim N\left(X_{n-1, \tau}, 1\right)$, and accepting with probability $\min \left(1, \frac{\pi_{\tau}\left(Y_{n, \tau}\right)}{\pi_{\tau}\left(X_{n-1, \tau)}\right.}\right)$.
- And, can also choose temperatures τ and τ^{\prime} (e.g., at random), and propose to "swap" the values $X_{n, \tau}$ and $X_{n, \tau^{\prime}}$, and accept this with probability min $\left(1, \frac{\pi_{\tau}\left(X_{n, \tau^{\prime}}\right) \pi_{\tau^{\prime}}\left(X_{n, \tau}\right)}{\pi_{\tau}\left(X_{n, \tau}\right) \pi_{\tau^{\prime}}\left(X_{n, \tau^{\prime}}\right)}\right)$.
- Now, normalising constants cancel, e.g. if $\pi_{\tau}(x)=c_{\tau}(\pi(x))^{1 / \tau}$, then acceptance probability is:

$$
\min \left(1, \frac{c_{\tau} \pi\left(X_{n, \tau^{\prime}}\right)^{1 / \tau} c_{\tau^{\prime}} \pi\left(X_{n, \tau}\right)^{1 / \tau^{\prime}}}{c_{\tau} \pi\left(X_{n, \tau}\right)^{1 / \tau} c_{\tau^{\prime}} \pi\left(X_{n, \tau^{\prime}}\right)^{1 / \tau^{\prime}}}\right)=\min \left(1, \frac{\pi\left(X_{n, \tau^{\prime}}\right)^{1 / \tau} \pi\left(X_{n, \tau}\right)^{1 / \tau^{\prime}}}{\pi\left(X_{n, \tau}\right)^{1 / \tau} \pi\left(X_{n, \tau^{\prime}}\right)^{1 / \tau^{\prime}}}\right)
$$

so c_{τ} and $c_{\tau^{\prime}}$ are not required.

- EXAMPLE: suppose again that $\Pi_{\tau}=\frac{1}{2} N\left(0, \tau^{2}\right)+\frac{1}{2} N\left(20, \tau^{2}\right)$, for $\tau=1,2, \ldots, 10$.
- Can run parallel tempering ... works pretty well. (file "Rpara")

END FRIDAY \# 6

- SUMMARY: Monte Carlo can be used for nearly everything!
- Good luck with your project, and with the rest of your studies.

