STA 447 / 2006, Winter 2012, Mid-Term Test: SOLUTIONS.

1. Consider a Markov chain with state space $S=\{1,2\}$, and transition probabilities $p_{11}=2 / 3, p_{12}=1 / 3, p_{21}=1 / 4$, and $p_{22}=3 / 4$.
(a) $[3]$ Compute $p_{12}^{(2)}$.

Solution. $\quad p_{12}^{(2)}=\sum_{k \in S} p_{1 k} p_{k 2}=p_{11} p_{12}+p_{12} p_{22}=(2 / 3)(1 / 3)+(1 / 3)(3 / 4)=$ $2 / 9+1 / 4=17 / 36$.
(b) [2] Determine whether or not this chain is irreducible.

Solution. Yes, it's irreducible: since $p_{i j}>0$ for all $i, j \in S$, therefore $i \rightarrow j$ for all $i, j \in S$.
(c) [4] Let $\pi_{1}=3 / 7$ and $\pi_{2}=4 / 7$. Prove that $\left\{\pi_{i}\right\}$ is a stationary probability distribution for this chain.

Solution. (i) Check that $\pi_{i} \geq 0$ (clear). (ii) Check that $\pi_{1}+\pi_{2}=1:(3 / 7)+$ $(4 / 7)=7 / 7=1$. (iii) Check that $\pi_{1} p_{11}+\pi_{2} p_{21}=\pi_{1}:(3 / 7)(2 / 3)+(4 / 7)(1 / 4)=$ $2 / 7+1 / 7=3 / 7=\pi_{1}$. (iv) Check that $\pi_{1} p_{12}+\pi_{2} p_{22}=\pi_{2}:(3 / 7)(1 / 3)+$ $(4 / 7)(3 / 4)=1 / 7+3 / 7=4 / 7=\pi_{2}$. So, $\left\{\pi_{i}\right\}$ is a stationary distribution. (Or, use reversibility.)

1. (cont'd) Recall that $S=\{1,2\}, p_{11}=2 / 3, p_{12}=1 / 3, p_{21}=1 / 4$, and $p_{22}=3 / 4$.
(d) [3] Determine whether or not $f_{11}=1$.

Solution. Yes. Since the chain is irreducible, and has a stationary distribution, it is recurrent (by the Stationary Recurrence Lemma). Hence, $f_{i i}=1$ for all $i \in S$. In particular, $f_{11}=1$. (Or, use the Finite Space Theorem. Or compute it directly.)
(e) [3] Determine whether or not $f_{21}=1$.

Solution. Yes. Since $f_{11}=1$ and $1 \rightarrow 2$ (by irreducibility), it follows from the F-Lemma (with $i=2$ and $j=1$) that $f_{21}=1$. (Or compute it directly.)
(f) [3] Determine whether or not $\sum_{n=1}^{\infty} p_{21}^{(n)}=\infty$.

Solution. Yes it is. By the Stronger Recurrence Theorem, since the chain is irreducible and $f_{11}=1$, therefore $\sum_{n=1}^{\infty} p_{i j}^{(n)}=\infty$ for all $i, j \in S$, and in particular $\sum_{n=1}^{\infty} p_{21}^{(n)}=\infty$.
(g) [3] Determine whether or not this chain is aperiodic.

Solution. Yes, it's aperiodic: since $p_{i i}>0$ for all $i \in S$, therefore every state i has period 1 .
(h) [2] Determine whether or not $\lim _{n \rightarrow \infty} p_{12}^{(n)}=\pi_{2}$.

Solution. Yes it does. The chain is irreducible, aperiodic, and has a stationary distribution $\left\{\pi_{i}\right\}$, so by the Markov Chain Convergence Theorem, $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=$ π_{j} for all $i, j \in S$. Setting $i=1$ and $j=2$ gives the result.
2. Consider a Markov chain with state space $S=\{1,2,3\}$, and transition probabilities $p_{11}=p_{12}=p_{22}=p_{23}=p_{32}=p_{33}=1 / 2$, with $p_{i j}=0$ otherwise.
(a) [3] Determine whether or not this chain is irreducible.

Solution. No, it isn't: since $p_{21}=0$ and $p_{31}=0$, it is impossible to ever get from state 2 to state 1, so the chain is not irreducible.
(b) [4] Compute $f_{i i}$ for each $i \in S$.

Solution. $\quad f_{11}=p_{11}=1 / 2$, since once we leave state 1 then we can never return to it. But $f_{22}=1$, since from state 2 we will either return to state 2 immediately, or go to state 3 but from there eventually return to state 2 . Similarly, $f_{33}=1$, since from state 3 we will either return to state 3 immediately, or go to state 2 but from there eventually return to state 3 .
(c) [3] Specify which states are recurrent, and which states are transient.

Solution. Since $f_{11}=1 / 2<1$, therefore state 1 is transient. But since $f_{22}=$ $f_{33}=1$, therefore states 2 and 3 are recurrent.
(d) [3] Compute the value of f_{13}.

Solution. From state 1, the chain might stay at state 1 for some number of steps, but with probability 1 will eventually move to state 2 . Then, from state 2 , the chain might stay at state 2 for some number of steps, but with probability 1 will eventually move to state 3 . So, $f_{13}=1$.

