## STA 447 / 2006, Winter 2012, Mid-Term Test: SOLUTIONS.

**1.** Consider a Markov chain with state space  $S = \{1, 2\}$ , and transition probabilities  $p_{11} = 2/3$ ,  $p_{12} = 1/3$ ,  $p_{21} = 1/4$ , and  $p_{22} = 3/4$ .

(a) [3] Compute  $p_{12}^{(2)}$ .

**Solution.**  $p_{12}^{(2)} = \sum_{k \in S} p_{1k} p_{k2} = p_{11} p_{12} + p_{12} p_{22} = (2/3)(1/3) + (1/3)(3/4) = 2/9 + 1/4 = 17/36.$ 

(b) [2] Determine whether or not this chain is irreducible.

**Solution.** Yes, it's irreducible: since  $p_{ij} > 0$  for all  $i, j \in S$ , therefore  $i \to j$  for all  $i, j \in S$ .

(c) [4] Let  $\pi_1 = 3/7$  and  $\pi_2 = 4/7$ . Prove that  $\{\pi_i\}$  is a stationary probability distribution for this chain.

Solution. (i) Check that  $\pi_i \ge 0$  (clear). (ii) Check that  $\pi_1 + \pi_2 = 1$ : (3/7) + (4/7) = 7/7 = 1. (iii) Check that  $\pi_1 p_{11} + \pi_2 p_{21} = \pi_1$ :  $(3/7)(2/3) + (4/7)(1/4) = 2/7 + 1/7 = 3/7 = \pi_1$ . (iv) Check that  $\pi_1 p_{12} + \pi_2 p_{22} = \pi_2$ :  $(3/7)(1/3) + (4/7)(3/4) = 1/7 + 3/7 = 4/7 = \pi_2$ . So,  $\{\pi_i\}$  is a stationary distribution. (Or, use reversibility.)

- **1.** (cont'd) Recall that  $S = \{1, 2\}, p_{11} = 2/3, p_{12} = 1/3, p_{21} = 1/4, and p_{22} = 3/4.$
- (d) [3] Determine whether or not  $f_{11} = 1$ .

**Solution.** Yes. Since the chain is irreducible, and has a stationary distribution, it is recurrent (by the Stationary Recurrence Lemma). Hence,  $f_{ii} = 1$  for all  $i \in S$ . In particular,  $f_{11} = 1$ . (Or, use the Finite Space Theorem. Or compute it directly.)

(e) [3] Determine whether or not  $f_{21} = 1$ .

**Solution.** Yes. Since  $f_{11} = 1$  and  $1 \rightarrow 2$  (by irreducibility), it follows from the *F*-Lemma (with i = 2 and j = 1) that  $f_{21} = 1$ . (Or compute it directly.)

(f) [3] Determine whether or not  $\sum_{n=1}^{\infty} p_{21}^{(n)} = \infty$ .

**Solution.** Yes it is. By the Stronger Recurrence Theorem, since the chain is irreducible and  $f_{11} = 1$ , therefore  $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$  for all  $i, j \in S$ , and in particular  $\sum_{n=1}^{\infty} p_{21}^{(n)} = \infty$ .

(g) [3] Determine whether or not this chain is aperiodic.

**Solution.** Yes, it's aperiodic: since  $p_{ii} > 0$  for all  $i \in S$ , therefore every state *i* has period 1.

(h) [2] Determine whether or not  $\lim_{n\to\infty} p_{12}^{(n)} = \pi_2$ .

**Solution.** Yes it does. The chain is irreducible, aperiodic, and has a stationary distribution  $\{\pi_i\}$ , so by the Markov Chain Convergence Theorem,  $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j$  for all  $i, j \in S$ . Setting i = 1 and j = 2 gives the result.

**2.** Consider a Markov chain with state space  $S = \{1, 2, 3\}$ , and transition probabilities  $p_{11} = p_{12} = p_{22} = p_{23} = p_{32} = p_{33} = 1/2$ , with  $p_{ij} = 0$  otherwise.

(a) [3] Determine whether or not this chain is irreducible.

**Solution.** No, it isn't: since  $p_{21} = 0$  and  $p_{31} = 0$ , it is impossible to ever get from state 2 to state 1, so the chain is <u>not</u> irreducible.

(b) [4] Compute  $f_{ii}$  for each  $i \in S$ .

**Solution.**  $f_{11} = p_{11} = 1/2$ , since once we leave state 1 then we can never return to it. But  $f_{22} = 1$ , since from state 2 we will either return to state 2 immediately, or go to state 3 but from there eventually return to state 2. Similarly,  $f_{33} = 1$ , since from state 3 we will either return to state 3 immediately, or go to state 2 but from there eventually return to state 3.

(c) [3] Specify which states are recurrent, and which states are transient.

**Solution.** Since  $f_{11} = 1/2 < 1$ , therefore state 1 is transient. But since  $f_{22} = f_{33} = 1$ , therefore states 2 and 3 are recurrent.

(d) [3] Compute the value of  $f_{13}$ .

**Solution.** From state 1, the chain might stay at state 1 for some number of steps, but with probability 1 will eventually move to state 2. Then, from state 2, the chain might stay at state 2 for some number of steps, but with probability 1 will eventually move to state 3. So,  $f_{13} = 1$ .