Name: \qquad Student Number: \qquad

STA 447 / 2006 (circle one), Winter 2012, Mid-Term Test

(February 16, 2012. Duration: 60 minutes. Questions: 2. Pages: 3. Total points: 36.)

Notes: You should fully explain your answers! Continue on the back if necessary. NO AIDS ALLOWED. You may use theorems from class. Point values in [square-brackets].

1. Consider a Markov chain with state space $S=\{1,2\}$, and transition probabilities $p_{11}=2 / 3, p_{12}=1 / 3, p_{21}=1 / 4$, and $p_{22}=3 / 4$.
(a) [3] Compute $p_{12}^{(2)}$.
(b) [2] Determine whether or not this chain is irreducible.
(c) [4] Let $\pi_{1}=3 / 7$ and $\pi_{2}=4 / 7$. Prove that $\left\{\pi_{i}\right\}$ is a stationary probability distribution for this chain.
2. (cont'd) Recall that $S=\{1,2\}, p_{11}=2 / 3, p_{12}=1 / 3, p_{21}=1 / 4$, and $p_{22}=3 / 4$.
(d) [3] Determine whether or not $f_{11}=1$.
(e) [3] Determine whether or not $f_{21}=1$.
(f) [3] Determine whether or not $\sum_{n=1}^{\infty} p_{21}^{(n)}=\infty$.
(g) [3] Determine whether or not this chain is aperiodic.
(h) [2] Determine whether or not $\lim _{n \rightarrow \infty} p_{12}^{(n)}=\pi_{2}$.
3. Consider a Markov chain with state space $S=\{1,2,3\}$, and transition probabilities $p_{11}=p_{12}=p_{22}=p_{23}=p_{32}=p_{33}=1 / 2$, with $p_{i j}=0$ otherwise.
(a) [3] Determine whether or not this chain is irreducible.
(b) [4] Compute $f_{i i}$ for each $i \in S$.
(c) [3] Specify which states are recurrent, and which states are transient.
(d) [3] Compute the value of f_{13}.
[END]
