STA447/2006 (Stochastic Processes), Winter 2012

Homework \#3

Due: In class at 6:10 p.m. sharp on Thursday April 5. Total points: 80. Warning: Late homeworks, even by one minute, will be penalised (as discussed on the course web page).

Note: You are welcome to discuss these problems in general terms with your classmates. However, you should figure out the details of your solutions, and write up your solutions, entirely on your own. Directly copying other solutions is strictly prohibited!
[Point values are indicated in square brackets. It is very important to EXPLAIN all your solutions very clearly - correct answers poorly explained will NOT receive full marks.]

Include at the top of the first page: Your name and student number, and whether you are enrolled in STA447 or STA2006.

1. Let $\left\{X_{n}\right\}$ be the usual Gambler's ruin Markov chain with $p=1 / 2, a=5$, and $c=20$. Let $T=\inf \left\{n \geq 0: X_{n}=0\right.$ or $\left.c\right\}$ as usual, and let $U=T-1$.
(a) [2] Compute $\mathbf{E}\left(X_{T}\right)$.
(b) [5] Compute $\mathbf{E}\left(X_{U}\right)$. [Hint: If $X_{T}=c$, then what must X_{U} equal? Or, if $X_{T}=0$, then what must X_{U} equal?]
(c) [3] Determine if $\mathbf{E}\left(X_{T}\right)=\mathbf{E}\left(X_{0}\right)$, and if $\mathbf{E}\left(X_{U}\right)=\mathbf{E}\left(X_{0}\right)$. Relate these facts to the Optional Stopping Corollary.
2. [8] Let $\left\{X_{n}\right\}$ be simple symmetric random walk, with $X_{0}=0$, and let $S=\inf \{n \geq$ $\left.0: X_{n}=-5\right\}$. Prove that $\lim _{M \rightarrow \infty} \mathbf{E}\left(X_{M} \mid S>M\right)=\infty$. [Hint: Let $T_{M}=\min (S, M)$, and apply the Optional Stopping Lemma.]
3. Let $\left\{X_{n}\right\}$ be a Markov chain on the state space $S=\{1,2,3, \ldots, 100\}$, with initial probabilities given by $\nu_{30}=\nu_{40}=1 / 2$, and with transition probabilities given by $p_{1,1}=p_{100,100}=1, p_{99,100}=p_{99,98}=1 / 2$, and for $2 \leq i \leq 98, p_{i, i-1}=2 / 3$ and $p_{i, i+2}=1 / 3$. Let $T=\inf \left\{n \geq 0: X_{n}=1\right.$ or 100$\}$.
(a) [4] Compute $\mathbf{P}\left(X_{4}=42\right)$.
(b) [6] Determine whether or not $\left\{X_{n}\right\}$ is a martingale.
(c) [6] Compute $\mathbf{P}\left(X_{T}=1\right)$. [Hint: Don't forget the Optional Stopping Corollary.]
4. [8] Let $\left\{B_{t}\right\}_{t \geq 0}$ be Brownian motion. Compute $\operatorname{Var}\left(B_{5} B_{8}\right)$, the variance of $B_{5} B_{8}$. [Hint: You may use without proof that if $Z \sim \operatorname{Normal}(0,1)$, then $\mathbf{E}(Z)=\mathbf{E}\left(Z^{3}\right)=0$, $\mathbf{E}\left(Z^{2}\right)=1$, and $\mathbf{E}\left(Z^{4}\right)=3$. And don't forget that $\left.B_{8}=B_{5}+\left(B_{8}-B_{5}\right).\right]$
5. [8] Let $\left\{B_{t}\right\}_{t \geq 0}$ be Brownian motion. Let $\theta \in \mathbf{R}$, and let $Z_{t}=\exp \left(\theta B_{t}-\theta^{2} t / 2\right)$. Prove that $\left\{Z_{t}\right\}_{t \geq 0}$ is a martingale. [Hint: You may use without proof the fact that if $W \sim N\left(\mu, \sigma^{2}\right)$, then $\mathbf{E}\left[e^{a W}\right]=e^{\mu a+\sigma^{2} a^{2} / 2}<\infty$.]
6. Let $\left\{B_{t}\right\}_{t \geq 0}$ be Brownian motion, let $X_{t}=X_{0} \exp \left(\mu t+\sigma B_{t}\right)$ be the stock price model (where $\sigma>0$), and let $D_{t}=e^{-r t} X_{t}$ be the discounted stock price.
(a) [4] Show that if $\mu=r-\frac{\sigma^{2}}{2}$, then $\left\{D_{t}\right\}$ is a martingale. [Hint: Don't forget the previous question.]
(b) [10] Show that if $\mu=r-\frac{\sigma^{2}}{2}$, then

$$
\mathbf{E}\left[e^{-r S} \max \left(0, X_{S}-K\right)\right]=X_{0} \Phi\left(\frac{\left(r+\frac{\sigma^{2}}{2}\right) S-\log \left(K / X_{0}\right)}{\sigma \sqrt{S}}\right)-e^{-r S} K \Phi\left(\frac{\left(r-\frac{\sigma^{2}}{2}\right) S-\log \left(K / X_{0}\right)}{\sigma \sqrt{S}}\right)
$$

where $\Phi(u)=\int_{-\infty}^{u} \frac{1}{\sqrt{2 \pi}} e^{-v^{2} / 2} d v$ is the cdf of a standard normal distribution. [Hint: Write the expectation as an integral with respect to the density function for B_{S}. Then, break up the integral into the part where $X_{S}-K \geq 0$ and the part where $X_{S}-K<0$.] [Note: this is the famous "Black-Scholes formula". You do not need to memorise it!]
7. Let $\{N(t)\}_{t \geq 0}$ be a Poisson process with intensity $\lambda=3$.
(a) [5] Compute $\mathbf{P}[N(6)=2 \mid N(8)=4]$.
(b) [5] Compute $\mathbf{P}[N(6)=2 \mid N(8)=4, N(3)=1]$.
(c) [6] Compute $\mathbf{E}([N(8)-N(5)][N(7)-N(2)])$. [Hint: You may use without proof the fact that if $Y \sim \operatorname{Poisson}(m)$, then $\mathbf{E}(Y)=\operatorname{Var}(Y)=m$.]

REMINDER: The final exam will be on Thursday Apr 12, from 7:00-10:00 p.m., in room 200 of Brennan Hall, 81 St. Mary Street ($2^{\text {nd }}$ floor). Bring your student card.

