STA2111F, Fall 2011, Mid-Term Test: SOLUTIONS.

1. Let $\Omega=\{1,2,3\}$. Let $\mathcal{F}=\{\emptyset,\{1\},\{2,3\},\{1,2,3\}\}$, which you may assume is a σ-algebra. Let $\mathbf{P}: \mathcal{F} \rightarrow[0,1]$ by $\mathbf{P}(\emptyset)=0, \mathbf{P}(\{1\})=4 / 5, \mathbf{P}(\{2,3\})=1 / 5$, and $\mathbf{P}(\{1,2,3\})=1$. Let $X, Y: \Omega \rightarrow \mathbf{R}$ by $X(1)=5, X(2)=10, X(3)=10, Y(1)=2$, $Y(2)=4, Y(3)=6$.
(a) $[3$ points $]$ Verify that \mathbf{P} is countably additive on \mathcal{F}.

Solution. If A_{1}, A_{2}, \ldots are disjoint, then either (i) at most one of the A_{i} is non-empty, say A_{1}, in which case additivity is trivial since $\mathbf{P}\left(\bigcup_{n} A_{n}\right)=\mathbf{P}\left(A_{1}\right)=$ $\sum_{n} \mathbf{P}\left(A_{n}\right)$, or (ii) precisely two of the A_{i} are non-empty, with one of the nonempty A_{i} being $\{1\}$ and the other being $\{2,3\}$, in which case $\mathbf{P}\left(\cup_{n} A_{n}\right)=P(\{1\} \cup$ $\{2,3\})=P\{1,2,3\})=1=4 / 5+1 / 5=P(\{1\})+P(\{2,3\})=\sum_{n} \mathbf{P}\left(A_{n}\right)$. So, in either case, $\mathbf{P}\left(\bigcup_{n} A_{n}\right)=\sum_{n} \mathbf{P}\left(A_{n}\right)$, i.e. \mathbf{P} is countable additive.
(b) $\quad[3$ points $]$ Is X a valid random variable on $(\Omega, \mathcal{F}, \mathbf{P})$?

Solution. Yes, since $\{X \leq x\}$ can only be \emptyset (if $x<5$) or $\{1\}$ (if $5 \leq x<10$) or $\{1,2,3\}$ (if $x \geq 10$), all of which are in \mathcal{F}.
(c) $[3$ points $]$ Is Y a valid random variable on $(\Omega, \mathcal{F}, \mathbf{P})$?

Solution. No, since e.g. $\{Y \leq 5\}=\{1,2\}$ which is not in \mathcal{F}.
(d) $[1$ point $]$ Compute $\mathbf{P}(X>8)$.

Solution. $\quad \mathbf{P}(X>8)=\mathbf{P}(\omega \in \Omega: X(\omega)>8\}=\mathbf{P}(\{2,3\})=1 / 5$.
2. [5 points] Let $(\Omega, \mathcal{F}, \mathbf{P})$ be as in Question 1. Let \mathcal{G} be the collection of all subsets of Ω (so, $\mathcal{F} \subseteq \mathcal{G}$). Determine (with explanation) which one of the following statements is true (recalling that "extension from \mathcal{F} to \mathcal{G} " means a countably additive probability measure on \mathcal{G}, which agrees with the original \mathbf{P} when restricted to \mathcal{F}):
(i) \mathbf{P} has no possible extension from \mathcal{F} to \mathcal{G},
or (ii) \mathbf{P} has one unique extension from \mathcal{F} to \mathcal{G},
or (iii) \mathbf{P} has more than one possible extension from \mathcal{F} to \mathcal{G}.
Solution. (iii) is true. For example, let \mathbf{P}_{1} be defined by $\mathbf{P}_{1}\{1\}=4 / 5$, $\mathbf{P}_{1}\{2\}=0, \mathbf{P}_{1}\{3\}=1 / 5$, and additivity, and let \mathbf{P}_{2} be defined by $\mathbf{P}_{2}\{1\}=4 / 5$, $\mathbf{P}_{2}\{2\}=1 / 5, \mathbf{P}_{2}\{3\}=0$, and additivity. Then \mathbf{P}_{1} and \mathbf{P}_{2} are both countably additive probability measures (by construction). Also $\mathbf{P}_{1}\{1\}=\mathbf{P}_{2}\{1\}=4 / 5$, and $\mathbf{P}_{1}\{2,3\}=\mathbf{P}_{2}\{2,3\}=1 / 5$, so \mathbf{P}_{1} and \mathbf{P}_{2} both agree with \mathbf{P} on \mathcal{F}. Thus, \mathbf{P}_{1} and \mathbf{P}_{2} are two different extensions of \mathbf{P} from \mathcal{F} to \mathcal{G}, so there is more than one possible extension. [NOTE: the uniqueness part of the Extension Theorem does NOT apply, since $\mathcal{G} \nsubseteq \sigma(\mathcal{F})$.]
3. [5 points] Let $(\Omega, \mathcal{F}, \mathbf{P})$ be any valid probability triple for which $\Omega=\{1,2,3, \ldots\}$, and \mathcal{F} is the collection of all subsets of Ω. For each $n \in \mathbf{N}$, let $A_{n}=\{n, n+1, n+2, \ldots\}$. Is it necessarily true that $\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)=0$? Why or why not?

Solution. Yes, the statement is true. Here $A_{n+1} \subseteq A_{n}$, and $\bigcap_{n} A_{n}=\emptyset$. Hence, by continuity of probabilities, $\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)=\mathbf{P}\left(\bigcap_{n} A_{n}\right)=\mathbf{P}(\emptyset)=0$.
4. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability triple defined by $\Omega=\{1,2,3,4\}$, and \mathcal{F} is the collection of all subsets of Ω, and $\mathbf{P}(\{1\})=\mathbf{P}(\{2\})=\mathbf{P}(\{3\})=\mathbf{P}(\{4\})=1 / 4$. Let $A_{n}=\{1\}$ for n odd, and $A_{n}=\{2,3\}$ for n even.
(a) [4 points] Are $A_{1}, A_{2}, A_{3}, \ldots$ independent?

Solution. \quad No, e.g. $\mathbf{P}\left(A_{1} \cap A_{2}\right)=\mathbf{P}(\{1\} \cap\{2,3\})=\mathbf{P}(\emptyset)=0$, but $\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2}\right)=$ $\mathbf{P}(\{1\}) \mathbf{P}(\{2,3\})=(1 / 4)(1 / 4+1 / 4)=1 / 8 \neq 0$.
(b) $[4$ points $]$ Compute $\mathbf{P}\left(\liminf _{n \rightarrow \infty} A_{n}\right)$.

Solution. Since $1 \notin A_{n}$ for all even n, and $2,3 \notin A_{n}$ for all odd n, therefore $\left\{A_{n} a . a.\right\}$ is empty, i.e. $\liminf _{n} A_{n}=\emptyset$, so $\mathbf{P}\left(\liminf _{n} A_{n}\right)=\mathbf{P}(\emptyset)=0$.
(c) [2 points] Compute $\liminf _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)$.

Solution. Here $\mathbf{P}\left(A_{n}\right)=1 / 4$ for n odd, and $\mathbf{P}\left(A_{n}\right)=1 / 4+1 / 4=1 / 2$ for n even. So, $\mathbf{P}\left(A_{n}\right)$ oscillates between $1 / 4$ and $1 / 2$. Hence, $\liminf _{n} \mathbf{P}\left(A_{n}\right)=1 / 4$.
(d) $[2$ points $]$ Compute $\limsup _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)$.

Solution. As above, $\mathbf{P}\left(A_{n}\right)$ oscillates between $1 / 4$ and $1 / 2$. Hence, $\limsup _{n} \mathbf{P}\left(A_{n}\right)=1 / 2$.
(e) $[4$ points $]$ Compute $\mathbf{P}\left(\underset{n \rightarrow \infty}{\limsup } A_{n}\right)$.

Solution. Since $1 \in A_{n}$ for all odd n, and $2,3 \in A_{n}$ for all even n, therefore $\left\{A_{n}\right.$ i.o. $\}=\{1,2,3\}$, so $\mathbf{P}\left(\lim \sup _{n} A_{n}\right)=\mathbf{P}(\{1,2,3\})=1 / 4+1 / 4+1 / 4=$ 3/4. [Note: since $\left\{A_{n}\right\}$ are not independent, we cannot use the Borel-Cantelli Lemma.]

