1. Let $\Omega = \{1, 2, 3\}$. Let $\mathcal{F} = \{\emptyset, \{1\}, \{2, 3\}, \{1, 2, 3\}\}$, which you may assume is a σ -algebra. Let $\mathbf{P} : \mathcal{F} \to [0, 1]$ by $\mathbf{P}(\emptyset) = 0$, $\mathbf{P}(\{1\}) = 4/5$, $\mathbf{P}(\{2, 3\}) = 1/5$, and $\mathbf{P}(\{1, 2, 3\}) = 1$. Let $X, Y : \Omega \to \mathbf{R}$ by X(1) = 5, X(2) = 10, X(3) = 10, Y(1) = 2, Y(2) = 4, Y(3) = 6.

(a) [3 points] Verify that \mathbf{P} is countably additive on \mathcal{F} .

Solution. If A_1, A_2, \ldots are disjoint, then either (i) at most one of the A_i is non-empty, say A_1 , in which case additivity is trivial since $\mathbf{P}(\bigcup_n A_n) = \mathbf{P}(A_1) = \sum_n \mathbf{P}(A_n)$, or (ii) precisely two of the A_i are non-empty, with one of the nonempty A_i being {1} and the other being {2,3}, in which case $\mathbf{P}(\bigcup_n A_n) = P(\{1\} \cup \{2,3\}) = P\{1,2,3\}) = 1 = 4/5 + 1/5 = P(\{1\}) + P(\{2,3\}) = \sum_n \mathbf{P}(A_n)$. So, in either case, $\mathbf{P}(\bigcup_n A_n) = \sum_n \mathbf{P}(A_n)$, i.e. \mathbf{P} is countable additive.

(b) [3 points] Is X a valid random variable on $(\Omega, \mathcal{F}, \mathbf{P})$?

Solution. Yes, since $\{X \le x\}$ can only be \emptyset (if x < 5) or $\{1\}$ (if $5 \le x < 10$) or $\{1, 2, 3\}$ (if $x \ge 10$), all of which are in \mathcal{F} .

(c) [3 points] Is Y a valid random variable on $(\Omega, \mathcal{F}, \mathbf{P})$?

Solution. No, since e.g. $\{Y \leq 5\} = \{1, 2\}$ which is not in \mathcal{F} .

(d) [1 point] Compute $\mathbf{P}(X > 8)$.

Solution. $\mathbf{P}(X > 8) = \mathbf{P}(\omega \in \Omega : X(\omega) > 8) = \mathbf{P}(\{2, 3\}) = 1/5.$

2. [5 points] Let $(\Omega, \mathcal{F}, \mathbf{P})$ be as in Question 1. Let \mathcal{G} be the collection of <u>all</u> subsets of Ω (so, $\mathcal{F} \subseteq \mathcal{G}$). Determine (with explanation) which <u>one</u> of the following statements is true (recalling that "extension from \mathcal{F} to \mathcal{G} " means a countably additive probability measure on \mathcal{G} , which agrees with the original \mathbf{P} when restricted to \mathcal{F}):

- (i) **P** has no possible extension from \mathcal{F} to \mathcal{G} ,
- or (ii) **P** has one unique extension from \mathcal{F} to \mathcal{G} ,
- or (iii) **P** has more than one possible extension from \mathcal{F} to \mathcal{G} .

Solution. (iii) is true. For example, let \mathbf{P}_1 be defined by $\mathbf{P}_1\{1\} = 4/5$, $\mathbf{P}_1\{2\} = 0$, $\mathbf{P}_1\{3\} = 1/5$, and additivity, and let \mathbf{P}_2 be defined by $\mathbf{P}_2\{1\} = 4/5$, $\mathbf{P}_2\{2\} = 1/5$, $\mathbf{P}_2\{3\} = 0$, and additivity. Then \mathbf{P}_1 and \mathbf{P}_2 are both countably additive probability measures (by construction). Also $\mathbf{P}_1\{1\} = \mathbf{P}_2\{1\} = 4/5$, and $\mathbf{P}_1\{2,3\} = \mathbf{P}_2\{2,3\} = 1/5$, so \mathbf{P}_1 and \mathbf{P}_2 both agree with \mathbf{P} on \mathcal{F} . Thus, \mathbf{P}_1 and \mathbf{P}_2 are two different extensions of \mathbf{P} from \mathcal{F} to \mathcal{G} , so there is more than one possible extension. [NOTE: the uniqueness part of the Extension Theorem does NOT apply, since $\mathcal{G} \not\subseteq \sigma(\mathcal{F})$.]

3. [5 points] Let $(\Omega, \mathcal{F}, \mathbf{P})$ be any valid probability triple for which $\Omega = \{1, 2, 3, \ldots\}$, and \mathcal{F} is the collection of all subsets of Ω . For each $n \in \mathbf{N}$, let $A_n = \{n, n+1, n+2, \ldots\}$. Is it necessarily true that $\lim_{n\to\infty} \mathbf{P}(A_n) = 0$? Why or why not?

Solution. Yes, the statement is true. Here $A_{n+1} \subseteq A_n$, and $\bigcap_n A_n = \emptyset$. Hence, by continuity of probabilities, $\lim_{n\to\infty} \mathbf{P}(A_n) = \mathbf{P}(\bigcap_n A_n) = \mathbf{P}(\emptyset) = 0$. 4. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability triple defined by $\Omega = \{1, 2, 3, 4\}$, and \mathcal{F} is the collection of all subsets of Ω , and $\mathbf{P}(\{1\}) = \mathbf{P}(\{2\}) = \mathbf{P}(\{3\}) = \mathbf{P}(\{4\}) = 1/4$. Let $A_n = \{1\}$ for n odd, and $A_n = \{2, 3\}$ for n even.

(a) [4 points] Are A_1, A_2, A_3, \ldots independent?

Solution. No, e.g. $\mathbf{P}(A_1 \cap A_2) = \mathbf{P}(\{1\} \cap \{2,3\}) = \mathbf{P}(\emptyset) = 0$, but $\mathbf{P}(A_1) \mathbf{P}(A_2) = \mathbf{P}(\{1\}) \mathbf{P}(\{2,3\}) = (1/4)(1/4 + 1/4) = 1/8 \neq 0$.

(b) [4 points] Compute $\mathbf{P}\left(\liminf_{n \to \infty} A_n\right)$.

Solution. Since $1 \notin A_n$ for all even n, and $2, 3 \notin A_n$ for all odd n, therefore $\{A_n \ a.a.\}$ is empty, i.e. $\liminf_n A_n = \emptyset$, so $\mathbf{P}(\liminf_n A_n) = \mathbf{P}(\emptyset) = 0$.

(c) [2 points] Compute $\liminf_{n \to \infty} \mathbf{P}(A_n)$.

Solution. Here $\mathbf{P}(A_n) = 1/4$ for *n* odd, and $\mathbf{P}(A_n) = 1/4 + 1/4 = 1/2$ for *n* even. So, $\mathbf{P}(A_n)$ oscillates between 1/4 and 1/2. Hence, $\liminf_n \mathbf{P}(A_n) = 1/4$.

(d) [2 points] Compute $\limsup_{n \to \infty} \mathbf{P}(A_n)$.

Solution. As above, $\mathbf{P}(A_n)$ oscillates between 1/4 and 1/2. Hence, $\limsup_n \mathbf{P}(A_n) = 1/2$.

(e) [4 points] Compute $\mathbf{P}\left(\limsup_{n \to \infty} A_n\right)$.

Solution. Since $1 \in A_n$ for all odd n, and $2, 3 \in A_n$ for all even n, therefore $\{A_n \ i.o.\} = \{1, 2, 3\}$, so $\mathbf{P}(\limsup_n A_n) = \mathbf{P}(\{1, 2, 3\}) = 1/4 + 1/4 + 1/4 = 3/4$. [Note: since $\{A_n\}$ are <u>not</u> independent, we <u>cannot</u> use the Borel-Cantelli Lemma.]