\qquad

STA2111F, Fall 2011, Mid-Term Test

(October 24, 2011. Duration: 60 minutes. Questions: 4. Pages: 3. Total points: 36.)
Note: You should fully explain your answers. Continue on the back if necessary.

1. Let $\Omega=\{1,2,3\}$. Let $\mathcal{F}=\{\emptyset,\{1\},\{2,3\},\{1,2,3\}\}$, which you may assume is a σ-algebra. Let $\mathbf{P}: \mathcal{F} \rightarrow[0,1]$ by $\mathbf{P}(\emptyset)=0, \mathbf{P}(\{1\})=4 / 5, \mathbf{P}(\{2,3\})=1 / 5$, and $\mathbf{P}(\{1,2,3\})=1$. Let $X, Y: \Omega \rightarrow \mathbf{R}$ by $X(1)=5, X(2)=10, X(3)=10, Y(1)=2$, $Y(2)=4, Y(3)=6$.
(a) [3 points] Verify that \mathbf{P} is countably additive on \mathcal{F}.
(b) $[3$ points $]$ Is X a valid random variable on $(\Omega, \mathcal{F}, \mathbf{P})$?
(c) [3 points] Is Y a valid random variable on $(\Omega, \mathcal{F}, \mathbf{P})$?
(d) [1 point] Compute $\mathbf{P}(X>8)$.
2. [5 points] Let $(\Omega, \mathcal{F}, \mathbf{P})$ be as in Question 1. Let \mathcal{G} be the collection of all subsets of Ω (so, $\mathcal{F} \subseteq \mathcal{G}$). Determine (with explanation) which one of the following statements is true (recalling that "extension from \mathcal{F} to \mathcal{G} " means a countably additive probability measure on \mathcal{G}, which agrees with the original \mathbf{P} when restricted to \mathcal{F}):
(i) \mathbf{P} has no possible extension from \mathcal{F} to \mathcal{G},
or (ii) \mathbf{P} has one unique extension from \mathcal{F} to \mathcal{G},
or (iii) \mathbf{P} has more than one possible extension from \mathcal{F} to \mathcal{G}.
3. [5 points] Let $(\Omega, \mathcal{F}, \mathbf{P})$ be any valid probability triple for which $\Omega=\{1,2,3, \ldots\}$, and \mathcal{F} is the collection of all subsets of Ω. For each $n \in \mathbf{N}$, let $A_{n}=\{n, n+1, n+2, \ldots\}$. Is it necessarily true that $\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)=0$? Why or why not?
4. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability triple defined by $\Omega=\{1,2,3,4\}$, and \mathcal{F} is the collection of all subsets of Ω, and $\mathbf{P}(\{1\})=\mathbf{P}(\{2\})=\mathbf{P}(\{3\})=\mathbf{P}(\{4\})=1 / 4$. Let $A_{n}=\{1\}$ for n odd, and $A_{n}=\{2,3\}$ for n even.
(a) [4 points] Are $A_{1}, A_{2}, A_{3}, \ldots$ independent?
(b) [4 points] Compute $\mathbf{P}\left(\liminf _{n \rightarrow \infty} A_{n}\right)$.
(c) [2 points] Compute $\liminf _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)$.
(d) [2 points] Compute $\limsup _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)$.
(e) [4 points] Compute $\mathbf{P}\left(\underset{n \rightarrow \infty}{\limsup } A_{n}\right)$.
[END]
