STA2111F, Fall 2011, Mid-Term Test

(October 24, 2011. Duration: 60 minutes. Questions: 4. Pages: 3. Total points: 36.) Note: You should <u>fully explain</u> your answers. Continue on the back if necessary.

1. Let $\Omega = \{1, 2, 3\}$. Let $\mathcal{F} = \{\emptyset, \{1\}, \{2, 3\}, \{1, 2, 3\}\}$, which you may assume is a σ -algebra. Let $\mathbf{P} : \mathcal{F} \to [0, 1]$ by $\mathbf{P}(\emptyset) = 0$, $\mathbf{P}(\{1\}) = 4/5$, $\mathbf{P}(\{2, 3\}) = 1/5$, and $\mathbf{P}(\{1, 2, 3\}) = 1$. Let $X, Y : \Omega \to \mathbf{R}$ by X(1) = 5, X(2) = 10, X(3) = 10, Y(1) = 2, Y(2) = 4, Y(3) = 6.

(a) [3 points] Verify that \mathbf{P} is countably additive on \mathcal{F} .

(b) [3 points] Is X a valid random variable on $(\Omega, \mathcal{F}, \mathbf{P})$?

(c) [3 points] Is Y a valid random variable on $(\Omega, \mathcal{F}, \mathbf{P})$?

(d) [1 point] Compute $\mathbf{P}(X > 8)$.

2. [5 points] Let $(\Omega, \mathcal{F}, \mathbf{P})$ be as in Question 1. Let \mathcal{G} be the collection of <u>all</u> subsets of Ω (so, $\mathcal{F} \subseteq \mathcal{G}$). Determine (with explanation) which <u>one</u> of the following statements is true (recalling that "extension from \mathcal{F} to \mathcal{G} " means a countably additive probability measure on \mathcal{G} , which agrees with the original \mathbf{P} when restricted to \mathcal{F}):

(i) **P** has no possible extension from \mathcal{F} to \mathcal{G} ,

or (ii) \mathbf{P} has one unique extension from \mathcal{F} to \mathcal{G} ,

or (iii) **P** has more than one possible extension from \mathcal{F} to \mathcal{G} .

3. [5 points] Let $(\Omega, \mathcal{F}, \mathbf{P})$ be any valid probability triple for which $\Omega = \{1, 2, 3, \ldots\}$, and \mathcal{F} is the collection of all subsets of Ω . For each $n \in \mathbf{N}$, let $A_n = \{n, n+1, n+2, \ldots\}$. Is it necessarily true that $\lim_{n\to\infty} \mathbf{P}(A_n) = 0$? Why or why not?

4. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability triple defined by $\Omega = \{1, 2, 3, 4\}$, and \mathcal{F} is the collection of all subsets of Ω , and $\mathbf{P}(\{1\}) = \mathbf{P}(\{2\}) = \mathbf{P}(\{3\}) = \mathbf{P}(\{4\}) = 1/4$. Let $A_n = \{1\}$ for n odd, and $A_n = \{2, 3\}$ for n even.

(a) [4 points] Are A_1, A_2, A_3, \ldots independent?

(b) [4 points] Compute $\mathbf{P}\left(\liminf_{n\to\infty}A_n\right)$.

(c) [2 points] Compute $\liminf_{n \to \infty} \mathbf{P}(A_n)$.

(d) [2 points] Compute $\limsup_{n \to \infty} \mathbf{P}(A_n)$.

(e) [4 points] Compute
$$\mathbf{P}\left(\limsup_{n \to \infty} A_n\right)$$
.

[END]