STA 410/2102F, Fall 2007: In-Class Test SOLUTIONS

1. [5 points] Write (with full explanation) the number - 19.25 in double-precision floating-point format.

$$
\begin{aligned}
& \text { Solution: } \quad-19.25=-\left(16+2+1+\frac{1}{4}\right)=-\left(2^{4}+2^{1}+2^{0}+2^{-2}\right)= \\
& -2^{4}\left(2^{0}+2^{-3}+2^{-4}+2^{-6}\right)=(-1)^{1} 2^{4} 1.001101=(-1)^{1} 2^{1027-1023} 1.001101
\end{aligned}
$$

2. [8 points] Determine (with full explanation) what value R will return if given the following expression: $1+2 \wedge(-10)+2 \wedge 50-2 \wedge 50$.

Solution: $\quad 1+2^{-10}=(-1)^{0} 2^{0} 1.0000000001$ (base 2).
Then, adding 2^{50} gives $2^{0} 1.0000000001+2^{50} 1.0=2^{50}\left(2^{-50} 1.0000000001+1.0\right)=$ $2^{50}\left(0 .[49\right.$ zeroes $] 1[9$ zeroes] $1+1.0)=2^{50} 1$.[49 zeroes] $1[9$ zeroes] 1 , which truncates to $2^{50} 1$.[49 zeroes] 1 since R only holds 52 decimal points.

Then, subtracting 2^{50} gives $2^{50} 1$.[49 zeroes] $1-2^{50} 1.0=2^{50}(1 .[49$ zeroes] $1-1.0)=$ $2^{50}(0$.[49 zeroes $\left.] 1\right)=2^{50}\left(2^{-50} 1.0\right)=2^{0} 1.0$, which equals 1 .

So, the answer is 1 .
3. [7 points] Write a complete R program to estimate the quantity $\mathbf{E}\left[Y /\left(1+Z^{4}\right)\right]$, where $Y \sim \operatorname{Poisson}(5)$ and $Z \sim \operatorname{Normal}(0,1)$, by a Monte Carlo simulation, using 1000 replications. Your program should output both the estimate and its standard error. [Hint: Recall the R commands "rpois(n, lambda)" to generate n independent Poisson(lambda) random variables, and "rnorm(n)" to generate n independent standard normal random variables.]

Solution:

```
n = 1000
yvec = rpois(n,5)
zvec = rnorm(n)
estimate = mean(yvec/(1+zvec^4))
se = sd(yvec/(1+zvec^4)) / sqrt(n)
cat("estimate equals", estimate, "\n")
cat("standard error equals", se, "\n")
```

4. Consider the function $g(x)=x^{2}-5$. Suppose we begin with the initial interval $[0,4]$. [You may assume that $g(0)<0$ and $g(4)>0$. And, in what follows, you do not need to
write a computer program, you just need to explain what intervals will arise.]
(a) [5 points] Present (with full explanation) the next two intervals computed by the Bisection Method.

Solution: \quad First midpoint $=(0+4) / 2=2$.
And, $g(2)=2^{2}-5=4-5=-1<0$, but $g(4)>0$.
So, the first new interval is $[2,4]$.
Then, second midpoint $=(2+4) / 2=3$.
And, $g(3)=3^{2}-5=9-5=4>0$, but $g(2)>0$.
So, the second new interval is $[2,3]$.
(b) [5 points] Present (with full explanation) the next one interval computed by the False Position (Safe Bisection) Method.

Solution: The line joining $(0, g(0))$ to $(4, g(4))$, i.e. joining $(0,-5)$ to $(4,11)$, is the line $y=4 x-5$.

Its root is the value of x such that $4 x-5=0$, i.e. $x=5 / 4$.
$g(5 / 4)=(5 / 4)^{2}-5=(25 / 16)-5<0$, but $g(4)>0$.
So, the new interval is $[5 / 4,4]$.
5. [10 points] Suppose it is believed that $Y=(X+\beta)^{2}+$ error, with β unknown. Assume that x and y are two vectors in R , each of length n , corresponding to the observed x and y values. Write a complete R program which runs the Newton-Raphson Method for 100 iterations, with initial value 2 , to compute the least-squares estimate of β. [Hint: before writing the program, you may need to compute some derivatives, etc.; be sure to explain all such computations.]

Solution: The squared-error function is $f(\beta)=\sum_{i=1}^{n}\left(y_{i}-\left(x_{i}+\beta\right)^{2}\right)^{2}$.
Its derivative is $g(\beta) \equiv f^{\prime}(\beta)=-4 \sum_{i=1}^{n}\left(y_{i}-\left(x_{i}+\beta\right)^{2}\right)\left(x_{i}+\beta\right)$. Then, the derivative of g is $g^{\prime}(\beta)=-4 \sum_{i=1}^{n}\left(\left(y_{i}-\left(x_{i}+\beta\right)^{2}\right)-2\left(x_{i}+\beta\right)^{2}\right)=-4 \sum_{i=1}^{n}\left(y_{i}-3\left(x_{i}+\beta\right)^{2}\right)$.

We want to find a critical value of f, i.e. find a root of g, i.e. find β such that $g(\beta)=0$, using the Newton-Raphson method.

The R program is as follows:

```
g = function(beta) { - 4 * sum( (y-(x+beta)^2) * (x+beta) ) }
gp = function(beta) { - 4* sum( y - 3* (x+beta)^2 ) }
# (Or, could omit "- 4" from both functions, since it cancels.)
betalist = c(2) # the initial value
for (i in 1:100) {
    betaprev = betalist[length(betalist)]
    betanew = betaprev - g(betaprev) / gp(betaprev)
    betalist = c(betalist, betanew)
}
print(betanew)
```

6. [10 points] Suppose we observe three (x, y) pairs: $(1,4),(2,6)$, and $(3,10)$. Compute (with full explanation) the cross-validation sum of squares (CVSS) for the unconstrained linear model, $Y=\beta_{1}+\beta_{2} X+$ error with β_{1} and β_{2} unknown. [Hint: remember that an unconstrained linear fit of two points passes through both points.]

Solution: $\quad f_{-1}(x)$ is an unconstrained linear fit of the two points $(2,6)$ and $(3,10)$, so $f_{-1}(x)$ passes through $(2,6)$ and $(3,10)$. Hence, $f_{-1}(x)=4 x-2$, so $f_{-1}(1)=4(1)-2=2$.

Similarly, $f_{-2}(x)$ passes through $(1,4)$ and (3,10), so $f_{-2}(x)=3 x+1$, so $f_{-2}(2)=3(2)+1=7$.

And, $f_{-3}(x)$ passes through $(1,4)$ and $(2,6)$, so $f_{-3}(x)=2 x+2$, so $f_{-3}(3)=$ $2(3)+2=8$.

Hence, $C V S S=\sum_{i=1}^{3}\left(y_{i}-f_{-i}\left(x_{i}\right)\right)^{2}=(4-2)^{2}+(6-7)^{2}+(10-8)^{2}=4+1+4=9$.
7. [10 points] Consider the estimator $\hat{\theta}$ which is "the second-largest value", i.e. $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)=\max \left\{x_{i}: x_{i}<\max \left(x_{1}, \ldots, x_{n}\right)\right\}$. [For example, $\hat{\theta}(3,20,17,12,15)=17$.] Suppose we observe, from an unknown distribution, four data values: 5, 7, 8, 10. Compute (with explanation) $\widehat{\operatorname{Var}}(\hat{\theta})$, the jackknife estimator of the variance of $\hat{\theta}$.

$$
\begin{aligned}
& \text { Solution: } \quad \hat{\theta}_{-1}=\hat{\theta}(7,8,10)=8 \text {. And, } \hat{\theta}_{-2}=\hat{\theta}(5,8,10)=8 \text {. And, } \hat{\theta}_{-3}= \\
& \hat{\theta}(5,7,10)=7 \text {. And, } \hat{\theta}_{-4}=\hat{\theta}(5,7,8)=7 \text {. So, } \hat{\theta}_{\bullet}=\frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{-i}=\frac{1}{4}(8+8+7+7)=7.5 \text {. } \\
& \text { Then, } \widehat{\operatorname{Var}}(\hat{\theta})=\frac{n-1}{n} \sum_{i=1}^{n}\left(\hat{\theta}_{-i}-\hat{\theta}_{\bullet}\right)^{2}=\frac{3}{4}\left((8-7.5)^{2}+(8-7.5)^{2}+(7-7.5)^{2}+(7-7.5)^{2}\right)= \\
& \frac{3}{4}(0.25+0.25+0.25+0.25)=3 / 4 \text {. }
\end{aligned}
$$

