STA410/2102 (Statistical Computation) Lecture Notes, Fall 2007

by Jeffrey S. Rosenthal, University of Toronto

(Last updated: December 5, 2007.)

Note: I will update these notes regularly (on-line). However, they are just rough, pointform notes, with no guarantee of completeness or accuracy. They should in no way be regarded as a substitute for attending the lectures, doing the homework exercises, or reading the reference books.

- Introduction to course, handout, references, R, prerequisites, etc.
- "Statistical Computation" v. "Computational Techniques in Statistics".
- Grading: Final Exam 50%, Term Test (Oct 23) 30%, Homework 20%.
- Course web page (updates etc.): probability.ca/sta410.
- Homework #0: worth one BONUS point. Due next class at 6:10 SHARP!
 - Run R (either on utstat, or cquest, or home computer, or laptop, or ...).
 - Use R to add up the digits of your student number.
 - Use R to compute " $2 \wedge 52 + 1 2 \wedge 52$ ", and " $2 \wedge 53 + 1 2 \wedge 53$ ".
 - Use R to verify at least one other (simple) computation from the first lecture.
 - Print out R's output, together with your NAME and STUDENT NUMBER, and bring it to class next week (by 6:10 – no late assignments will be accepted!).
- How many undergrads? In Statistics specialist program? Statistics major? Actuarial Science specialist? major? Math? Computer Science? Physics/Chemistry? Economics? Management? Life Sciences? Engineering? Other?
- How many grad students? In statistics? biostat? CS? other?
- How many neither undergrad nor grad?
- INTRODUCTION TO R:
 - "3+4", "2 \wedge 10", "1.3 \wedge 6.2", "sin(5)", "log(17)", "exp(9)", etc.

- $``x = c(3,4,7,2.3)" \dots ``x" \dots ``sum(x)" \dots ``mean(x)" \dots ``sd(x)" \dots$
- $> s = 0 \dots > for (i in 1:5) \dots + s = s + i \land 2 \dots > s \dots [1] 55 \dots$
- $-x = 1:5 \dots sum(x \wedge 2) \dots$
- pnorm(-1) ... rpois(5,14) ...
- " $\operatorname{plot}(x)$ " ... " $\operatorname{plot}(x, \operatorname{type}='b')$ " ... " $\operatorname{hist}(x)$ " ... $\operatorname{pie}(x \wedge 2)$...
- COMPUTER ARITHMETIC:
 - $\begin{aligned} &> 2 \wedge 10 \dots [1] \ 1024 \dots > 2 \wedge 100 \ [1] \ 1.267651e + 30 > 2 \wedge 1000 \dots [1] \ 1.071509e + 301 \\ \dots &> 2 \wedge 10000 \dots [1] \ Inf \dots \end{aligned}$
 - $> 2 \wedge (-1000) \dots [1] 9.332636 302 \dots > 2 \wedge (-10000) \dots [1] 0 \dots$

$$- > 2 \wedge 10 + 1 - 2 \wedge 10 \dots [1] 1 \dots > 2 \wedge 100 + 1 - 2 \wedge 100 \dots [1] 0 \dots Why??$$

- DOUBLE PRECISION FLOATING POINT NUMBERS:
 - (There's also single precision, integer, etc., but we'll stick to double precision flaoting point.)
 - Computers store numbers in binary (base 2), usually in the following format:

$$(-1)^{s} 2^{e-1023} 1.m_1 m_2 \dots m_{52}$$
 (base 2)
= $(-1)^{s} 2^{e-1023} (1 + \sum_{i=1}^{52} m_i 2^{-i}),$

where:

- ----- the "sign" s = 0 or 1 (1 bit);
- ----- the "written exponent" e is between 0 and $(2^{11} 1) 1 = 2046$ (11 bits);
- ---- (So, the "true exponent" equals e 1023, and is between -1023 and 1023.)
- —— the "mantissa" consists of 52 bits m_i , each 0 or 1 (52 bits).
- * (64 bits [i.e., 8 eight-bit "bytes"] total, where each "bit" is 0 or 1.)

---- (single precision: 1 + 8 + 23 = 32 bits)

• For example, $5 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 101$ (base 2) = $(-1)^0 2^{1025 - 1023} 1.01$.

- And, -14.75 = -1110.11 (base 2) = $(-1)^1 2^{1026-1023} 1.11011$.

- (Also have a few special values, like Inf, -Inf, NaN, ...; the special case $e = 2^{11} 1$ is reserved for these; hence that final "-1" in the written exponent's range.)
- (Special underflow trick: when e = 0, then the leading digit "1" is omitted, allowing for even smaller values to be represented. [Further details at beginning of next class.])
 - $> 2 \land 1023 \dots [1] 8.988466e + 307 \dots > 2 \land 1024 \dots [1] Inf \dots$
 - $> 2 \land (-1023) \ldots [1] 1.112537 e-308 \ldots > 2 \land (-1024) \ldots [1] 5.562685 e-309 \ldots > 2 \land (-1025) \ldots [1] 2.781342 e-309 \ldots$
 - $> 2 \wedge (-1074) \dots [1] 4.940656 e-324 \dots > 2 \wedge (-1075) \dots [1] 0 \dots$
- To <u>multiply</u> two floating point numbers (goes from left to right):
 - —— Add their true exponents.

— Use long multiplication (base 2) on mantissas, with carrying, discarding (or rounding) any bits lower-order than 2^{-52} .

- —— "Normalise", i.e. do a final shift of the exponent.
- Works pretty much as expected, e.g.

$$7 \times 3 = (1.11 \times 2^2) \times (1.1 \times 2^1) = (1.11 \times 1.1) \times 2^{2+1} = 10.101 \times 2^3$$

$$= 1.0101 \times 2^4 = (1 + (1/4) + (1/16)) \times 16 = 16 + 4 + 1 = 21.$$

- To <u>add</u> two floating point numbers (goes from left to right):
 - —— Adjust them to have the same (larger) true exponent, dropping lower-order bits.
 - Add their mantissas, with carrying.
 - —— "Normalise", i.e. do a final shift of the exponent.
 - —— Can lead to dropping of important quantities.
 - For example,

$$32 + 3 = 1.0 \times 2^5 + 1.1 \times 2^1 = 1.0 \times 2^5 + 0.00011 \times 2^5$$

$$= 1.00011 \times 10^5 = 32 + 2 + 1 = 35.$$

 $- > 2 \wedge 10 + 1 - 2 \wedge 10 \dots [1] 1 \dots > 2 \wedge 52 + 1 - 2 \wedge 52 \dots [1] 1 \dots > 2 \wedge 53 + 1 - 2 \wedge 53 \dots [1] 0 \dots > 2 \wedge 53 - 2 \wedge 53 + 1 \dots [1] 1 \dots$

- Why? Well,

$$2^{53} + 1 = 1.0 \times 2^{53} + 1.0 \times 2^{0} = 1.0 \times 2^{53} + 0.00 \dots 01 \times 2^{53}$$

$$= 1.00 \dots 01 \times 2^{53} = 1.0 \times 2^{53}$$

(lower order bit gets dropped!).

$$- > 1 + 2 \wedge (-52) - 1 \dots [1] 2.220446e-16 \dots > 1 + 2 \wedge (-53) - 1 \dots [1] 0 \dots$$

- MUST SOMETIMES BE CAREFUL WITH COMPUTATIONS!
- e.g. suppose want P[X = 200], where $X \sim \text{Poisson}(100)$. (Guesses?)
 - $> \exp(-100) * 100 \land 200 / \operatorname{prod}(1:200) \dots [1]$ NaN
 - $> \exp(-100) \dots [1] 3.720076e-44 \dots > \exp(-100) * 100 \land 200 \dots [1] \text{ Inf } \dots$
 - $\begin{aligned} &-> \exp(-100)*100 \wedge 100 \ / \ \mathrm{prod}(1:200)*100 \wedge 100 \ldots \ [1] \ 0 \ldots > \exp(-100)*100 \wedge 100 \\ &/ \ \mathrm{prod}(1:200) \ \ldots \ [1] \ 0 \ \ldots \end{aligned}$
 - $> 100 \land 200 \dots [1]$ Inf ... > prod(1:200) ... [1] Inf ...
 - $\begin{aligned} &-> \exp(-100) * 100 \wedge 100 \ / \ \operatorname{prod}(1:100) \dots [1] \ 0.039861 \dots > \exp(-100) * 100 \wedge 100 \ / \\ & \operatorname{prod}(1:100) * 100 \wedge 100 \dots [1] \ 3.9861e + 198 \dots > \exp(-100) * 100 \wedge 100 \ / \ \operatorname{prod}(1:100) \\ & * \ 100 \wedge 100 \ / \ \operatorname{prod}(101:200) \dots [1] \ 4.716971e 19 \dots \end{aligned}$
 - $> dpois(200,100) \dots [1] 4.716971e-19 \dots > dpois(201,100) \dots [1] 2.346752e-19 \dots > ppois(199, 100, lower.tail=FALSE) \dots [1] 9.34315e-19 \dots$
- Alternatively, can compute $\log \mathbf{P}[X = 200] = -100 + 200 \log(100) \sum(\log(1:200)) = -42.19795$, and then $\exp(-42.19795) = 4.716971e-19$.
- CONCLUSION: Computer arithmetic mostly works well, but not always!
 - Important to understand <u>when</u> and <u>why</u> it fails.
- INTRODUCTION TO MONTE CARLO REAL/FAKE RANDOMNESS:
- Divide into about eight groups of students: A,B,C,...
- Each group:

- Take sheet of paper.
- Write group name at top.
- Flip a coin once.
- If it's heads, you're a "true randomness" group: flip a coin 100 times, NEATLY writing '1' for heads and '0' for tails.
- If it's tails, you're a "fake randomness" group: put the coin away, and MAKE UP 100 FAKE COIN FLIPS, again NEATLY writing '1' for heads and '0' for tails.
- Can the professor tell which are fake? (to be continued!)

- END WEEK #1------

[Collect Homework #0 assignments.]

[Assign Homework #1.]

[Offer extra course handouts as needed.]

[Note: I posted lecture notes on web (probability.ca/sta410). Did anyone look at them?]

[Question: How many are running R on cquest? utstat? home? laptop? other? none?]

[Question: Did anyone look at any of the reference books?]

Summary of Previous Class:

- * Intro to course, R, etc.
- * R's Failures, e.g. $2^{100} + 1 2^{100}$.
- * Double precision floating point numbers:

 $----(-1)^s 2^{e-1023} 1.m_1 m_2 \dots m_{52}$ (base 2)

* Multiplication and addition of floating point numbers.

- * Experiment with real versus fake randomness (continue today).
 - CLARIFICATION: true exponent is between -1023 and 1023. However, if it's -1023 (i.e. e = 0), then m_1 becomes units digit (since mantissa might not begin with 1):

$$(-1)^{s} 2^{-1023} m_1 m_2 m_3 \dots m_{52}$$
 (base 2) = $(-1)^{s} 2^{-1023} \left(\sum_{i=1}^{52} m_i 2^{-i+1}\right)$.

So, the smallest possible power of two is

 $(-1)^0 2^{-1023} 0.000 \dots 001 \text{ (base 2)} = 2^{-1023} 2^{-51} = 2^{-1023-51} = 2^{-1074}.$

- Computations near 2^{-1074} are quite fragile:
 - $> 2 \land (-1074) \dots [1] 4.940656 324 \dots > 2 \land (-1074)^* 1.4 \dots [1] 4.940656 324 \dots > 2 \land (-1074)^* 1.5 \dots [1] 9.881313 324 \dots > 2 \land (-1074)^* 2 \dots [1] 9.881313 324 \dots$
- REAL/FAKE RANDOMNESS EXPERIMENT, CONTINUED:
 - How to distinguish between real and fake randomness?
 - Read them out? See if they "sound" random??
 - Record various "summary statistics" of the 100 flips: number of heads, number of changes, length of longest sequence, number of three-in-a-row ["coinstats.pdf"].
 - Formally: "heads" = $\#\{i : X_i = 1\} = \operatorname{sum}(X)$. "changes" = $\#\{i : X_i \neq X_{i-1}\}$. "longest" = $\max\{m : \exists i \text{ s.t. } X_i = \ldots = X_{i+m-1}\}$. "three" = $\#\{i : X_i = X_{i+1} = X_{i+2}\}$.
 - Which are "typical" values??
- To compute typical values, we do a Monte Carlo simulation.
 - Run file "Rcoins", using command: source('Rcoins')
 - Get sequence of the values of the each statistic for repeated, randomised sequences.
 - Consider each statistic's mean and standard deviation.
 - Also, get histograms of the values of the statistics.
 - Using this, which of the sequences have "reasonable" values of the statistics?
- Our computer program was an example of a *Monte Carlo simulation*.
 - We performed random simulation from some probability distribution, to determine typical values of various statistics under that particular model (i.e., true coin flips).

- We then compared the output to the observed values (from the student groups), to judge whether the model was accurate.
- There are many other uses of Monte Carlo, too.
- Example: Suppose want to estimate $\mathbf{E}[Z^4 \cos(Z)]$, where $Z \sim \text{Normal}(0, 1)$.
 - Monte Carlo solution: replicate a large number z_1, \ldots, z_n of Normal(0,1) random variables, and let $x_i = z_i^4 \cos(z_i)$.
 - Their mean $\overline{x} \equiv n^{-1} \sum_{i=1}^{n} x_i$ is an (unbiased) estimate of $\mathbf{E}[X] \equiv \mathbf{E}[Z^4 \cos(Z)]$.
 - What about this estimate's uncertainty?
 - Well, can estimate standard deviation of \overline{x} by "standard error":

$$se = sd(\overline{x}) = n^{-1/2} sd(x) = n^{-1/2} \sqrt{var(x)} = n^{-1/2} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

- Homework #1!
- We'll see more about Monte Carlo later on.
- NUMERICAL OPTIMISATION:
 - e.g. maximum likelihood estimator (MLE): find θ to maximise $L(x_1, \ldots, x_n | \theta)$.
 - e.g. regression: find β_1 and β_2 to <u>minimise</u>, say, $\sum_{i=1}^n (y_i (\beta_1 + \beta_2 x_i))^2$.
 - How to maximise (or minimise)?
 - Can use R functions "optimise", "nlm", "optim", ...
 - But how do they work??
- EXAMPLE: $f(x) = x^2 \exp(-(x + \sin(x)))$.
 - How to maximise f, over all x > 0?
 - Want to solve for f'(x) = 0, but how?
 - Well, if f'(x) = 0, then $h(x) \equiv f'(x) + x = x$.
 - So, how to solve for h(x) = x?

- FIXED-POINT ITERATION TO SOLVE FOR h(x) = x, e.g. f'(x) + x = x:
 - Choose some initial guess x_0 .
 - Then let $x_1 = h(x_0)$, and $x_2 = h(x_1)$, and so on.
 - In general, $x_{n+1} = h(x_n)$.
 - If it converges, i.e. $\{x_n\} \to x$, and h continuous, then h(x) = x.
- BACK TO EXAMPLE: maximise $f(x) = x^2 \exp(-(x + \sin(x)))$ over x > 0.
 - Here $f'(x) = 2 * x * \exp(-(x + \sin(x))) + x^2 * \exp(-(x + \sin(x))) * (-1 \cos(x)).$
 - Then h(x) = f'(x) + x.
 - If, say, start at 1, then h(1) = 1.072901, h(h(1)) = 1.136110, h(h(h(1))) = 1.192873.
 - Will it ever converge?
 - Yes it will! (Run file "Riter".) Converges to 4.165672.
 - Works well for any starting value in (0, 8).
 - But h(0) = 0, so that doesn't go anywhere (local min).
 - Also, if start at 9 or larger, then converges to another fixed point, namely 10.06609.
 - Actually, $f(4.17) \doteq 0.63$ while $f(10.07) \doteq 0.007$, so the point we "wanted" was 4.17, not 10.07. How to know?
 - -10.07 is tiny additional local max: "curve(f, 8, 12)".
- So, in this example, iterative algorithm works, but is globally *unstable*.
- LOCAL STABILITY: if x_n is close to fixed point r, then

 $e_{n+1} \equiv x_{n+1} - r = h(x_n) - r = h(r + (x_n - r)) - r \approx h(r) + h'(r)(x_n - r) - r = h'(r)(e_n),$ so that $e_n \approx e_0 (h'(r))^n$.

- Geometric convergence if |h'(r)| < 1. Pretty good ...

- Comment: why not just use "plot" or "curve", and just "eyeball" the result?
 - Plots can "miss" features (off of plot's domain, too narrow, ...).
 - Want procedure to be *automated* for greater efficiency.
 - In higher dimensions, can't "eyeball" so easily.
 - And more.

- END WEEK #2-----

[Reminder: Homework #1 due Oct 2 at 6:10 pm sharp. In Question 5, delete "use enough replications to make the standard error less than 0.05".]

[Contacting me: I don't have regular weekly "office hours" since usually no one comes! But you can e-mail or find me any time, e.g. after class, or arrange a meeting by e-mail.]

[Perhaps office hour just before HW#1 is due: this Friday, Sept 28 and/or next Monday, Oct 1, from 2:30 - 3:30?]

Summary of Previous Class:

* Discussion of floating-point arithmetic near 2^{-1074} .

* Real/Fake randomness experiment (cont'd).

—— Summary statistics.

- Monte Carlo simulation to estimate mean, sd, histogram.
- Not too <u>successful</u>, but ...

* Monte Carlo to estimate, say, $\mathbf{E}[Z^4 \cos(Z)]$.

— Mean, standard error.

—— Finish it on HW #1.

* Optimisation.

—— Used for MLE, regression, etc.

* Iterative method: h(x) = f'(x) + x, $x_{n+1} = h(x_n)$.

— Works well in example of $f(x) = x^2 \exp(-(x + \sin(x)))$.

— Locally stable (local geometric convergence) if |h'(r)| < 1.

* Just plotting f not good enough ...

• MORE ABOUT "ROUNDING" IN R:

 $\begin{aligned} - &> 2 \wedge 53 + 1 - 2 \wedge 53 \dots [1] \ 0 \dots > 2 \wedge 53 + 1.1 - 2 \wedge 53 \dots [1] \ 2 \dots > 2 \wedge 54 + 1.1 \\ &- 2 \wedge 54 \dots [1] \ 0 \dots > (2 \wedge 53 + 2) + 1 - (2 \wedge 53 + 2) \dots [1] \ 2 \dots > (2 \wedge 53 + 2) + \\ &0.9 - (2 \wedge 53 + 2) \dots [1] \ 0 \dots > (2 \wedge 53 + 4) + 1 - (2 \wedge 53 + 4) \dots [1] \ 0 \dots \end{aligned}$

• BACK TO OPTIMISATION:

- Simple MLE example:
 - $-X_1,\ldots,X_n \sim N(\theta,1)$, with θ unknown.
 - Observe some values x_1, \ldots, x_n .
 - Likelihood function:

$$L(x_1, \dots, x_n | \theta) = \prod_{i=1}^n N(\theta, 1; x_i)$$
$$= \prod_{i=1}^n (2\pi)^{-1/2} \exp(-(x_i - \theta)^2/2) = (2\pi)^{-n/2} \exp(-\sum_{i=1}^n (x_i - \theta)^2/2).$$

- Want to find the value $\hat{\theta}$ for θ that maximises $L(x_1, \ldots, x_n | \theta)$.
- (Actually, we know: maximised when $\theta = \overline{x}$. But suppose we didn't.)
- Log-likelihood function:

$$\ell(x_1, \dots, x_n | \theta) = \log L(x_1, \dots, x_n | \theta) = C - \sum_{i=1}^n (x_i - \theta)^2 / 2.$$

- Suppose two observations: $x_1 = 1$, and $x_2 = 2$. (And, can ignore "C".)
- f = function(theta) { (1-theta) $\wedge 2/2$ (2-theta) $\wedge 2/2$ }
- fp = function(theta) { + (1-theta) + (2-theta) }
- -h =function(theta) { fp(theta) + theta} = 3 theta.
- Iterations don't converge they oscillate back and forth about 1.5.
- Indeed, here $h'(\theta) \equiv -1$.
- Suppose instead have density $\propto \exp(-(x_i \theta)^4)$.

- $\ell(x_1, \ldots, x_n | \theta) = C \sum_{i=1}^n (x_i \theta)^4.$
- Again suppose two observations: $x_1 = 1$, and $x_2 = 2$.
- f = function(theta) { (1-theta) \wedge 4 (2-theta) \wedge 4 }
- fp = function(theta) { + 4*(1-theta) \wedge 3 + 4*(2-theta) \wedge 3 }
- h =function(theta) { fp(theta) + theta}
- Even worse iterations oscillate to $\pm \infty$, unless start at 1.5. (File "Riter2".)
- Indeed, here $h'(\theta) = O(\theta^3)$.
- BISECTION ALGORITHM TO SOLVE FOR g(x) = 0, e.g. f'(x) = 0:
 - Assume that g is a continuous function.
 - Start with interval [a, b] with g(a) g(b) < 0, i.e. either g(a) < 0 < g(b) or g(a) > 0 > g(b). (So, a and b must "bracket" a root.)
 - Then, let c = (a+b)/2 (midpoint).
 - If g(a) g(c) < 0, replace b by c, otherwise (if $g(b_0) g(c_1) < 0$), replace a by c. [If g(c) = 0 then done.]
 - Guaranteed to always have a root within the interval [a, b].
 - Once interval [a, b] sufficiently small, then a and b are (both) sufficiently close to a root. (Error is bounded by length of interval good!)
 - And, length of interval [a, b] multiplied by 1/2 at each iteration good.
 - (Do graphical example on the blackboard ... more on next HW.)
- NEWTON-RAPHSON ALGORITHM TO SOLVE FOR g(x) = 0, e.g. f'(x) = 0:
 - WANT to find r such that g(r) = 0.
 - Have some guess x_0 , and know $g(x_0)$ and $g'(x_0)$.
 - How to find r?

- Well, if g were linear about x_0 , i.e. $g(x) = g(x_0) + (x x_0) g'(x_0)$, then could solve for r such that g(r) = 0, by: $0 = g(r) = g(x_0) + (r - x_0) g'(x_0)$, i.e. $r = x_0 - g(x_0)/g'(x_0)$.
- Use this for iterative algorithm: $x_{n+1} = x_n g(x_n)/g'(x_n)$, for $n = 0, 1, 2, \ldots$
- BACK TO SECOND MLE EXAMPLE:
 - g = function(theta) { $+ 4^*(1-\text{theta}) \land 3 + 4^*(2-\text{theta}) \land 3$ }
 - $gp = function(theta) \{ -12^*(1-theta) \land 2 12^*(2-theta) \land 2 \}$
 - If $x_0 = 4$, then $x_1 = 4 g(4)/g'(4) \doteq 3.103$, $x_2 = 2.474$, $x_3 = 2.014$, $x_4 = 1.676$, $x_5 = 1.513$, $x_6 = 1.500$, ...
 - Converges very quickly to 1.5. (File "Rnewt".)
- LOCAL STABILITY OF NEWTON-RAPHSON?

- Well, if x_n close to r, then recalling that $x_{n+1} = x_n - g(x_n)/g'(x_n)$,

$$0 = g(r) \approx g(x_n) + (r - x_n) g'(x_n) + \frac{1}{2} (r - x_n)^2 g''(x_n)$$

$$= g(x_n) + r g'(x_n) - x_n g'(x_n) + \frac{1}{2} (r - x_n)^2 g''(x_n)$$

$$= r g'(x_n) - x_{n+1} g'(x_n) + \frac{1}{2} (r - x_n)^2 g''(x_n)$$

$$= -e_{n+1} g'(x_n) + \frac{1}{2} (e_n)^2 g''(x_n),$$

so $e_{n+1} \approx (e_n)^2 [\frac{1}{2} g''(x_n) / g'(x_n)] \approx (e_n)^2 [\frac{1}{2} g''(r) / g'(r)].$

- Quadratic convergence <u>better</u> than geometric!
- MUST BE CAREFUL!
 - Might not converge at all.
 - Or, might appear to converge, but not really, e.g. g(x) = (1/x) 1, and $x_0 = 0.000001$, then $x_1 \doteq 0.000002$, and $x_2 \doteq 0.000004$; appears to be settling down to x = 0, but true root is at x = 1.
 - File "Rnewt2".

• SECANT METHOD:

- If it's too hard to compute $g'(x_n)$, then instead approximate this by $g'(x_n) \approx (g(x_n) g(x_{n-1})) / (x_n x_{n-1}).$
- So, update becomes: $x_{n+1} = x_n g(x_n) (x_n x_{n-1}) / (g(x_n) g(x_{n-1})).$
- Need two starting values: x_0 and x_1 .
- Also, if $x_{n+1} = x_n$, then x_{n+2} will be undefined, so algorithm should <u>terminate</u> (and output x_{n+1}) at that point.
- Asymptotically just as fast as Newton-Raphson, but even more unstable in early stages.
- Note that if $g(x_n)$ and $g(x_{n-1})$ have opposite signs, then x_{n+1} will always be <u>between</u> x_n and x_{n-1} . [Show graph.]
- FALSE POSITION ("REGULA FALSI", "SAFE BISECTION") METHOD:
 - Combine Secant Method with Bisection Method.
 - Start with interval [a, b] bracketing a root, as in Bisection Method.
 - Then let c = b g(b)(b a)/(g(b) g(a)), as in Secant Method.
 - Then, as in Bisection Method, keep c, together with whichever of b and a has corresponding function value of opposite sign. [Or, if g(c) = 0, then done.]
 - Like Bisection Method, guarantees that the latest two points will always bracket a root.
 - But like Secant Method, "tries" to have faster convergence.

----- END WEEK #3-------

[Collect HW #1; assign HW #2; reminder of in-class test on Oct 23.]

Summary of Previous Class:

 \ast MLE examples.

—— Fixed-Point Iteration Method doesn't always work.

- * Bisection Algorithm to solve g(x) = 0.
- —— "Guaranteed" to converge, with geometric factor 1/2.
- —— Clear error bound.
- \ast Newton-Raphson Algorithm.
- Given x_n , let x_{n+1} be root of linear approximation.
- Quadratic LOCAL convergence, but no GLOBAL guarantee.
- Requires computing $g'(x_n)$.
- * Secant Method: Replace derivative with secant approximation.
- —— Still quadratic local convergence; still no global guarantee.
- * False Position (Safe Bisection):
- —— Combine best of Bisection and Secant methods.
- Use Secant Method formula to find new "c".
- —— Combine c with either a or b, as in Bisection Method.
 - Safe Bisection can still be slow, e.g. $g(x) = x^{20} 0.1$, with $x_0 = 0$ and $x_1 = 2$.
 - Can improve this with ILLINOIS METHOD: Like safe bisection method, except that if the same endpoint (b, say) is used twice in a row, then replace g(b) by g(b)/2 in the x_{n+1} formula. May help speed up convergence, e.g. above example.
 - CONCLUSION: There are *many* optimisation algorithms out there.
 - Good software packages do optimisation very carefully, and <u>combine</u> different methods as needed.
 - WHAT ABOUT OPTIMISING MULTIVARIATE FUNCTIONS $f : \mathbf{R}^d \to \mathbf{R}$?
 - Want to solve for $g_i(\mathbf{x}) \equiv \frac{\partial}{\partial x_i} f(\mathbf{x}) = 0$, for $i = 1, 2, \dots, d$.
 - MULTI-DIMENSIONAL NEWTON'S METHOD:
 - Proceed as in one-dim Newton's method:

$$0 = g_i(\mathbf{r}) \approx g_i(\mathbf{x}) + \sum_j \left(\frac{\partial g_i}{\partial x_j}\right)(\mathbf{x}) \left(r_j - x_j\right) = g_i(\mathbf{x}) + \sum_j H_{ij}(r_j - x_j),$$

where we write the derivative matrix as:

$$\{H_{ij}\} = \left(\frac{\partial g_i}{\partial x_j}\right) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)$$

- Or, in "column vector" form,

$$0 \approx \mathbf{g}(\mathbf{x}) + \mathbf{H}(\mathbf{x}) (\mathbf{r} - \mathbf{x}).$$

So, solving for \mathbf{r} gives $\mathbf{r} \approx \mathbf{x} - \mathbf{H}^{-1}(\mathbf{x}) \mathbf{g}(\mathbf{x}) = \mathbf{x} - (\mathbf{H}^{-1}\mathbf{g})(\mathbf{x}).$

- So, algorithm has updates of the form:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{H}^{-1}(\mathbf{x}_n) \mathbf{g}(\mathbf{x}_n) = \mathbf{x}_n - (\mathbf{H}^{-1}\mathbf{g})(\mathbf{x}_n)$$

- Harder to implement (matrix inverse, vector multiplication), but still has quadratic local convergence.
- ANOTHER METHOD: GRADIENT [STEEPEST] ASCENT/DESCENT:
 - Idea: at \mathbf{x} , f is increasing fastest in the direction of

$$\nabla f(\mathbf{x}) \equiv \left(\frac{\partial f}{\partial x_i}(\mathbf{x}) \right) \equiv \left(g_i(\mathbf{x}) \right)$$

- So, to maximise f, use update $\mathbf{x}_{n+1} = \mathbf{x}_n + \alpha \nabla f(\mathbf{x}_n)$, for small $\alpha > 0$.
- (Or, to minimise, take $\alpha < 0$.)
- Might "zig-zag" a lot, but <u>hopefully</u> will eventually find a (local) maximum.
- EXAMPLE: maximise $f(x1, x2) = -(x1-2)^2 (x2-3)^4$.
 - If $\mathbf{x}_0 = (4, 4)$, then converges well. (file "Rsteep")
 - But if $\mathbf{x}_0 = (10, 10)$, then diverges. (again, file "Rsteep")
 - What to do?
- Use RETRACTION: if $f(\mathbf{x}_{n+1}) < f(\mathbf{x}_n)$, then the point \mathbf{x}_{n+1} is REJECTED, and we instead replace \mathbf{x}_{n+1} by $(\mathbf{x}_n + \mathbf{x}_{n+1})/2$ and try again. (Opposite if minimising.)
 - Fixes the problem. (file "Rsteep2")
- MANY OTHER ALGORITHMS, e.g. "simplex method" (see Gray, pp. 121–122) ...
 - Could spend an entire course ... entire PhD ... entire research career ...

- Point is: computers can optimise ...
- NON-LINEAR REGRESSION:
 - Computers can maximise/minimise "any" function. (e.g. R's "nlm")
 - So, can do "any" form of regression!
 - e.g. suppose we believe $Y = X^{\beta} + \text{error}$, with β unknown.
 - Then we observe some pairs $(x_1, y_1), \ldots, (x_n, y_n)$.
 - Least squares: find value $\hat{\beta}$ for β to minimise $\sum_{i=1}^{n} (y_i x_i^{\beta})^2$.
 - (Equivalent to MLE if errors are Normal $(0, \sigma^2)$.)
 - Can do this numerically [HW #2].
- Or, perhaps $Y = X^{\beta_1} + \beta_2 e^X + \beta_3 \sin(\beta_4 X) + \dots$ Or perhaps ...
- SO WHERE DOES IT END??
 - Could use a model to determine a predictor function, f(x).
 - Then, could measure "residual sum of squares", $RSS = \sum_i (y_i f(x_i))^2$.
 - Does smallest RSS correspond to best model?
- PERHAPS NOT!
 - Given observations $(x_1, y_1), \ldots, (x_n, y_n)$, with distinct $\{x_i\}$, consider:

$$f(x) = \sum_{i} y_i \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}$$

- Then f is a polynomial function, of degree n-1.
- Also, $f(x_i) = y_i$ for all *i*. So, RSS = 0.
- Conclusion: Can find polynomial $\beta_{n-1}x^{n-1} + \beta_{n-2}x^{n-2} + \ldots + \beta_1x + \beta_0$ which fits the *n* pairs *exactly*, i.e. RSS = 0.
- But is that really a "good fit" of the data?

- Maybe not, since it's "cheating", i.e. using (x_i, y_i) as part of the fitting in order to predict y_i .
- What does "good fit" really MEAN, anyway?
- OVERFITTING:
 - Want our function to show the "underlying relationship" between X and Y, but not the "idiosyncracies" of the data we happen to observe.
 - Real goal: to PREDICT future values of Y, from future values of X.
 - How to test that??

– END WEEK #4–––––

[Reminder: in-class test on Oct 23, room T.B.A., no aids, bring student card.]

[Reminder: homework #2 due Oct 16, by 6:10 p.m. sharp. hw2rev.pdf: (i) in Q1, defn of f'(x) is missing two closing brackets; anyway f(x) and f'(x) are already defined in file "Riter"; also algorithm should terminate whenever $x_{n+1} = x_n$; (ii) in Q1(b), if one of the initial values equals 0, then replace it by 1 or 2; (iii) in Q3, use the "Illinois Method" modification to make sure the algorithm converges.]

[Web page: updated hw2.pdf ... R directory ... regrading policy ...]

[Office hour Friday (Oct 12) 2:30–3:30? Monday (Oct 15) 2:30–3:30? (Study buddies??)]

Summary of Previous Class:

* Illinois Method: modification of False Position method, where whenever the same interval endpoint is re-used, its function value is divided by two (for purposes of computing the next "c"). Important!

- * Multi-dimensional Newton's method: $\mathbf{x}_{n+1} = \mathbf{x}_n \mathbf{H}^{-1}(\mathbf{x}_n) \mathbf{g}(\mathbf{x}_n)$.
- * Steepest Ascent: $\mathbf{x}_{n+1} = \mathbf{x}_n + \alpha \nabla f(\mathbf{x}_n)$, for small $\alpha > 0$.
- With <u>retraction</u>.
- For descent (minimisation), take $\alpha < 0$.
- * Regression: can use any model, then minimise $RSS = \sum_{i} (y_i f(x_i))^2$.
- * Can even fit a (degree n-1) polynomial f so RSS = 0.
- * But is that really best? Overfitting? Prediction?

- TRAINING VERSUS TESTING DATA ("holdout method"):
 - Can divide up data (randomly) into training data $(x_1, y_1), \ldots, (x_t, y_t)$, and testing data $(x_{t+1}, y_{t+1}), \ldots, (x_n, y_n)$.
 - Fit values of the β_i (or whatever) using $(x_1, y_1), \ldots, (x_t, y_t)$. Use these to obtain a predictor function, f(x).
 - Then measure the ACCURACY of the predictor function by considering the "test data squared error", $\sum_{i=t+1}^{n} (y_i f(x_i))^2$.
 - If a different model gives a smaller t.d.s.e., it's a "better fit".
 - Good method ... commonly used in CS/AI ...
 - However, need to have lots of data; some is "wasted" ...
- Alternative: CROSS-VALIDATION:
 - More precisely, "leave-one-out cross-validation (LOOCV)".
 - For each *i*, find a predictor function $f_{-i}(x)$ using only the OTHER data, i.e. $(x_1, y_1), \ldots, (x_{i-1}, y_{i-1}), (x_{i+1}, y_{i+1}), \ldots, (x_n, y_n).$
 - Then predict y_i by $f_{-i}(x_i)$. (So, no "cheating".)
 - Then measure the accuracy by the "cross-validation sum of squares", $CVSS = \sum_{i=1}^{n} (y_i f_{-i}(x_i))^2$.
 - NOTE: the final FIT is still done using the original predictor function f(x), which minimises RSS for the model chosen; the functions $f_{-i}(x)$ are used ONLY for selecting which model gives the best predictions.
 - Observation: cross-validation can take lots of computer time, since fits of the data must be made n different times!

• A SIMPLE EXAMPLE:

- Suppose observe three pairs: (2,5), (4,25), (6,35).
- Consider three possible models: (a) $Y = \delta X + \text{error}$; (b) $Y = \beta_1 + \beta_2 X + \text{error}$;

(c) $Y = X^{\gamma} + \text{error.}$

- Which model is best? worst?
- Try fitting directly: (a) $\hat{\delta} = 5.71$, gives RSS = 46.43; (b) $\hat{\beta}_1 = -8.33$, $\hat{\beta}_2 = 7.5$, gives RSS = 16.67; (c) $\hat{\gamma} = 2.03$, gives RSS = 78.99.
- So does that really mean (b) is best, (a) is second, and (c) is worst??
- TRY CROSS-VALIDATION! (file "Rcross")
 - For (a), $f_{-1}(x) = 5.96 x$, $f_{-2}(x) = 5.5 x$, $f_{-3}(x) = 5.5 x$. Get $CVSS = (5 2 * 5.96)^2 + (25 4 * 5.5)^2 + (35 6 * 5.5)^2 = 60.9$.
 - For (b), $f_{-1}(x) = 5 + 5x$, $f_{-2}(x) = -10 + 7.5x$, $f_{-3}(x) = -15 + 10x$. Get $CVSS = (5 2 * 5 5)^2 + (25 4 * 7.5 (-10))^2 + (35 6 * 10 (-15))^2 = 225$.
 - For (c), $f_{-1}(x) = x^{2.028}$, $f_{-2}(x) = x^{1.985}$, $f_{-3}(x) = x^{2.322}$. Get $CVSS = (5 2^{2.0278})^2 + (25 4^{1.985})^2 + (35 6^{2.322})^2 = 934.33$.
 - So, in this case, although (b) is the best <u>direct</u> fit of the data, (a) has smaller CVSS and thus is (supposedly!) better for future predictions. (And (c) is worst, by both measures.)
- VARIANCE OF ESTIMATORS:
 - Suppose want to estimate some parameter θ of a distribution, given a sample x_1, x_2, \ldots, x_n .
 - Suppose have some estimator, $\hat{\theta}(x_1, x_2, \dots, x_n)$.
 - What is the <u>uncertainty</u> (variance) of the estimator?
- Example: suppose $\theta = \text{mean}(X_i)$, and $\hat{\theta} = \overline{x} \equiv \frac{1}{n} \sum_{i=1}^n x_i$.
 - Then $\operatorname{Var}(\hat{\theta}) = \operatorname{Var}(\overline{X}) = \frac{1}{n} \operatorname{Var}(X_i).$
 - And, can <u>estimate</u> this by $\frac{1}{n} \left(\frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})^2 \right)$.
- But what about other estimators?
 - median, quantile, "trimmed mean" (mean of middle n 2g order statistics), ...

- How to estimate their variances?
- THE JACKKNIFE:
 - Let $\hat{\theta}_{-i} = \hat{\theta}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$, the same estimator except <u>omitting</u> the data point x_i (a bit like cross-validation).
 - Then let $\hat{\theta}_{\bullet} = \frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{-i}$.
- Jackknife estimator of variance: $\widehat{\operatorname{Var}}(\hat{\theta}) \equiv \frac{n-1}{n} \sum_{i=1}^{n} (\hat{\theta}_{-i} \hat{\theta}_{\bullet})^2$.
- e.g. if $\hat{\theta} = \overline{x}$, then $\hat{\theta}_{-i} = \frac{1}{n-1} \sum_{j \neq i} x_j$, and

$$\hat{\theta}_{\bullet} = \frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{-i} = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} x_j = \frac{1}{n(n-1)} (n-1) \sum_j x_j = \frac{1}{n} \sum_j x_j = \overline{x}.$$

- Can be computed(!) that $\widehat{\operatorname{Var}}(\hat{\theta}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i \overline{x})^2$, the usual unbiased estimate of $\operatorname{Var}(\overline{x})$.
- Example: data = 10 fixed samples from Uniform[0,1].
 - jackknife estimate of variance = true sample variance = 0.00865. (file "Rjack")
- More generally, have Theorem (Math Stat?): if $\hat{\theta}(X_1, \ldots, X_n) = \frac{1}{n} \sum_{i=1}^n \phi(X_i)$ for some (finite-expectation) function ϕ , then $\mathbf{E}[\widehat{\operatorname{Var}}(\hat{\theta})] = \operatorname{Var}(\hat{\theta})$, i.e. $\widehat{\operatorname{Var}}(\hat{\theta})$ is an unbiased estimator of the variance of $\hat{\theta}$.
- For other estimators, the jackknife estimate of variance isn't always so accurate! (Efron & Stein 1981: if symmetric, on average it OVERESTIMATES var.)
 - e.g. median: $\hat{\theta}$ = median (x_1, \dots, x_n) . data = 100 samples from Uniform[0,1]. Then true var around 0.002, and jackknife estimate of variance averages about 0.005, somewhat too high. (file "Rjack2")
 - e.g. truncated mean: $\hat{\theta} = \frac{1}{n-2g} \sum_{i=g+1}^{n-g} x_{(i)}$ for some 0 < g < n/2, where $x_{(i)}$ is *i*'th <u>order statistic</u>. Take n=30, g=5, and data = 30 samples from N(0,1). Then both true var and jackknife estimate about 0.038, so quite good. [Check: when g = 0 it's very close.] (file "Rjack3")
 - e.g. max: $\hat{\theta} = \max(x_1, \ldots, x_n)$. [MLE for θ in Uniform[0, θ] dist.] data = 100

samples from Uniform[0,1]. Then true var around 0.0001, and jackknife estimate of variance averages about 0.00015, a little too high. (file "Rjack4")

– END WEEK #5–––––

[Collect HW#2, and return HW#1. Reminder of regrading policy.]

[In-class test next week (Oct 23), in <u>Mining Building</u> (170 College Street) room 128. No aids. Bring student card. Photos might be taken.]

[Office hours: Monday Oct 22, 2:30-4.]

Summary of Previous Class:

* How to compare different models?

* Training versus testing data:

— Fit to training data $(x_1, y_1), \ldots, (x_t, y_t)$.

— Then test on testing data $(x_{t+1}, y_{t+1}), \ldots, (x_n, y_n)$.

* Cross-validation:

— For each *i*, fit to all data except (x_i, y_i) , then test on (x_i, y_i) .

—— File "Rcross" (now in colour!).

* In both cases, <u>final</u> fit is to <u>all</u> data!

—— The training/testing or cross-validation is just to <u>compare models</u>.

* Estimating Variance of an Estimator (when true distribution completely unknown).

* Jackknife:

$$---- \hat{\theta}_{-i} = \hat{\theta}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n).$$

* Tried on various examples (files "Rjack", "Rjack2", ...).

— Lots of variability in individual estimates.

—— On <u>average</u>, sometimes very close, sometimes somewhat too high.

- Another approach: THE BOOTSTRAP.
 - Want to estimate $\operatorname{Var}(\hat{\theta}) = \mathbf{E}[(\hat{\theta} \mathbf{E}(\hat{\theta}))^2].$
 - However, the distribution of X_i , written $\mathcal{L}(X_i)$, is <u>unknown</u>.
 - Idea: find an <u>estimate</u> \hat{F}_n of the unknown distribution $\mathcal{L}(X_i)$.

- Then compute $\operatorname{Var}(\hat{\theta})$ by assuming that X_1, \ldots, X_n are i.i.d. $\sim \hat{F}_n$.
- EXAMPLE (parametric): suppose $X_1, \ldots, X_n \sim \text{Exponential}(\lambda)$, with λ unknown.
 - Parameter to be estimated: $\theta = \mathbf{E}(X_i) = 1/\lambda$.
 - Estimator: $\hat{\theta} = \overline{X}$.
 - Observe: x_1, \ldots, x_n .
 - Then could estimate λ by MLE $\equiv \hat{\lambda} = 1/\overline{x}$.
 - Hence, estimate the law of X_i by Exponential $(\hat{\lambda}) = \text{Exponential}(1/\overline{x})$.
 - Now, if $\hat{\theta}$ were the mean of *n* different i.i.d. Exponential($\hat{\lambda}$) random variables, then its variance would be $\frac{1}{n}(\hat{\lambda})^{-2} = \frac{1}{n}(\overline{x})^2$.
 - So, estimate $\operatorname{Var}(\hat{\theta})$ by $\frac{1}{n}(\overline{x})^2$.
 - ("parametric bootstrap estimate of variance")
- But what if don't have a parametric model?
- Can estimate $\mathcal{L}(X_i)$ by the empirical distribution, $\hat{F}_n \equiv \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$.
 - [This is the distribution that gives mass $\frac{1}{n}$ to each point x_1, \ldots, x_n .]
 - [That is, we estimate $\mathbf{P}[X \le x]$ by $\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(x_i \le x)$.]
 - Then estimate $\mathbf{E}(\hat{\theta})$, and then $\operatorname{Var}(\hat{\theta})$, by computing them according to \hat{F}_n .
 - ("nonparametric bootstrap estimate of variance")
- EXAMPLE: observe x_1, \ldots, x_n , from unknown distribution.
 - Parameter to be estimated: $\theta = \mathbf{E}(X_i)$. Estimator: $\hat{\theta} = \overline{X}$.
 - Then $\mathbf{E}_{\hat{F}_n}(X_1) = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x}.$
 - So, $\operatorname{Var}_{\hat{F}_n}(\hat{\theta}) = \operatorname{Var}_{\hat{F}_n}(\overline{X}) = \frac{1}{n} \operatorname{Var}_{\hat{F}_n}(X_1) = \frac{1}{n} \mathbf{E}_{\hat{F}_n}[(X_1 \overline{x})^2] = \frac{1}{n^2} \sum_{i=1}^n (x_i \overline{x})^2.$
 - So, can estimate $\operatorname{Var}(\hat{\theta})$ by $\frac{1}{n^2} \sum_{i=1}^n (x_i \overline{x})^2$.
 - (Similar to usual unbiased estimator $\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i \overline{x})^2 \dots$ but slightly biased.)

- ("Exact nonparametric bootstrap estimator of variance", i.e. no "resampling".)
- BUT WHAT IF CAN'T COMPUTE $\operatorname{Var}_{\hat{F}_n}(\hat{\theta})$? (Usual case.)
 - Idea: Estimate $\operatorname{Var}_{\hat{F}_n}(\hat{\theta})$ by Monte Carlo simulation!
 - First, generate a <u>sample</u> $x_1^{*(1)}, x_2^{*(1)}, \dots, x_n^{*(1)} \sim \hat{F}_n$ (i.i.d.).
 - (So, each $x_i^{*(1)}$ is equal to some x_j , where j is chosen uniformly in $\{1, 2, ..., n\}$, sampled with repetition. "resampling")
 - Then can compute $\hat{\theta}(x^{*(1)}) \equiv \hat{\theta}(x_1^{*(1)}, x_2^{*(1)}, \dots, x_n^{*(1)}).$
 - Repeat this entire procedure B times, generating samples $\mathbf{x}^{*(1)}, \mathbf{x}^{*(2)}, \dots, \mathbf{x}^{*(B)}$, each consisting of n i.i.d. samples from \hat{F}_n .
 - Then can estimate $\mathbf{E}(\hat{\theta})$ by $\theta^* = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}(\mathbf{x}^{*(b)}).$
 - Then can estimate $\operatorname{Var}(\hat{\theta})$ by $\operatorname{Var}^*(\hat{\theta}) = \frac{1}{B-1} \sum_{b=1}^{B} \left(\hat{\theta}(\mathbf{x}^{*(b)}) \theta^*\right)^2$, the usual unbiased estimate of the variance of $\hat{\theta}$ according to the distribution \hat{F}_n .
 - ("Bootstrap resampling estimate of variance", a.k.a. "the bootstrap".)
- BOOTSTRAP (RESAMPLING) FOR THE PREVIOUS EXAMPLES (B = 1000):
 - mean (with 10 fixed observations): bootstrap estimate of variance around 0.008,
 quite close to true value of 0.00865. (file "Rboot")
 - median: bootstrap estimate of variance around 0.002, quite close to true value (also around 0.002), though somewhat variable. (file "Rboot2")
 - truncated mean (n=30, g=5): bootstrap estimate of variance varies between about 0.0027 and 0.005, reasonably close to true value (around 0.004). (file "Rboot3")
 - max: bootstrap estimate of variance somewhat unstable, but usually fairly close to true value (around 0.0001), though sometimes much too small. (file "Rboot4")
- So, bootstrap (resampling) <u>fairly</u> robust and accurate (but computationally intensive).
- WHAT ABOUT BIAS ESTIMATION?

- e.g. $\hat{\theta} = \max(x_1, \ldots, x_n)$, MLE for θ in Uniform[0, θ] dist.
- data = 100 samples from Uniform[0,1], i.e. <u>true</u> $\theta = 1$.
- Biased estimator: bias = $\mathbf{E}[\hat{\theta} \theta] < 0$, since always $\hat{\theta} < \theta$.
- How much bias??
- Jackknife estimator of bias: $\hat{b}(\hat{\theta}) \equiv (n-1)(\hat{\theta}_{\bullet} \hat{\theta}).$
 - Theorem (Math Stat?): if $\mathbf{E}(\hat{\theta}) = \theta + \frac{a(\theta)}{n}$, then $\mathbf{E}[\hat{b}(\hat{\theta})] = \mathbf{E}[\hat{\theta} \theta] = \text{true bias}$, i.e. it's an unbiased estimator of the bias (!).
 - More generally, if $\mathbf{E}(\hat{\theta}) = \theta + \frac{a(\theta)}{n} + O(1/n^2)$, then $\mathbf{E}[\hat{b}(\hat{\theta})] = \mathbf{E}[\hat{\theta} \theta] + O(1/n^2)$, i.e. unbiased to leading order.
- Bootstrap (resampling) estimator of bias:

$$b^*(\hat{\theta}) = \theta^* - \hat{\theta} \equiv \left(\frac{1}{B}\sum_{b=1}^B \hat{\theta}(\mathbf{x}^{*(i)})\right) - \hat{\theta}.$$

- For above "max" example $(\theta = 1, n = 100)$:
 - Actual bias (from simulations) is around -0.01, and average jackknife bias estimate of bias is also around -0.01, quite good (at least on average). (file "Rjack5")
 - Bootstrap estimate of bias ranges from -0.002 to -0.009, so not bad, but somewhat unstable, and also too <u>small</u> (in magnitude) on average. (file "Rboot5")
 - Can also compute the <u>exact</u> bias numerically: -0.00990099, very close to -0.01. (see bottom of file "Rboot5")
 - (Actually, "max" is known to be a challenging estimator for the bootstrap, since often the resampled data has the same max.)
- NOTE: jackknife and bootstrap also used for many other things besides variance and bias estimation, not covered here ...

[Final reminder: In-class test next week in Mining Building, room 128!!]

– END WEEK #6––––––

[IN-CLASS TEST!!]

—— END WEEK #7————

[Return in-class test & hw#2... check grades list ... NO FRIVILOUS REGRADES!]

[Assign hw#3. ... Final exam 7–10pm on Wed Dec 12, NR25.]

[Another on-line reference, by Galin Jones, now available on web page ... Books useful?] [Keep break to 15 minutes!]

- (NONPARAMETRIC) DENSITY ESTIMATION:
- Suppose observe x_1, \ldots, x_n .
- Want to estimate the density, f(x), describing their probabilities.
- (Nonparametric, i.e. the density is <u>not</u> assumed to be from a specific family.)
- Running example: 100 fixed data points (in file "Rdens").
- One approach: a HISTOGRAM.
 - For some h > 0, break up range into intervals [jh, (j+1)h).
 - Interval containing x is [floor(x/h)h, (floor(x/h) + 1)h].
 - Would expect about n h f(x) points in this interval.
 - So, use approximation:

$$\hat{f}(x) = \frac{1}{nh} \# \{ i : \text{floor}(x/h) \, h \le x_i < (\text{floor}(x/h) + 1) \, h \}$$

(file "Rdens")

- (Could instead assign this value to interval MIDPOINTS, connected by lines.)
- Another approach: CENTERED INTERVALS.
 - For some h > 0, consider interval [x h, x + h].
 - Would expect about 2nhf(x) points in this interval.

- So, use approximation:

$$\hat{f}(x) = \frac{1}{2nh} \#\{i : |x - x_i| < h\}.$$

(file "Rdens")

- Another (more general) approach: KERNEL DENSITY ESTIMATOR.
 - For some h > 0, and some probability density function ("kernel") K, pretend each point x_i came from its own density K, scaled by h and centered at x_i , i.e. $\frac{1}{h} K\left(\frac{x-x_i}{h}\right)$.
 - So, use approximation:

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x-x_i}{h}\right).$$

- (Centered intervals correspond to $K(\cdot) = \text{Uniform}[-1, 1]$.)
- Often take K to be density of Normal(0,1). (file "Rdens")
- Each of these approaches has a parameter h, the BANDWIDTH.
 - How does changing h affect the estimate? (file "Rdens")
- What is "optimal" bandwidth?
 - Ideally, want $h \to 0$ but $nh \to \infty$ (then get perfect estimate).
 - But what to do if n fixed? (Usual situation.)
- One approach: try to (approximately) minimise the Mean Integrated Squared Error,

$$MISE = \mathbf{E}\left[\int_{-\infty}^{\infty} \left(\hat{f}(x) - f(x)\right)^2 dx\right],$$

where the expectation is taken over $x_1, \ldots, x_n \sim f$.

- [In running example, Summed Squared Error is about 2.30 for R's version, 1.77 for kernel dens (h = 0.2), 2.09 for centered invervals (h = 0.2).]
- Theorem: Kernel Density Estimator's MISE is minimised, to within $O(1/nh, h^4)$, at:

$$h = h_{opt} = \left(\frac{\int_{-\infty}^{\infty} K(x)^2 dx}{n \operatorname{Var}(K)^2 \int_{-\infty}^{\infty} f''(x)^2 dx}\right)^{1/5}.$$
 (*)

- (Good approximation if h small but nh large; usual case.)
- Theorem not too useful, since f'(x) <u>unknown</u>.
- But does show that $h_{opt} = O(n^{-1/5})$.
- RULE OF THUMB approximation [based on a Normal approximation in (*)] is: $h_{opt} \approx (4/3n)^{1/5} \operatorname{sd}(x_1, \ldots, x_n).$
 - In running example, gives $h \doteq 0.592$. (Gives summed error of 2.79, worse than 1.77 with h = 0.2.)
 - Alternative: <u>first</u> use this approximation to estimate $\int_{-\infty}^{\infty} f'(x)^2 dx$, <u>then</u> use result to estimate h_{opt} from (*). Many options ...
 - (Or can just "eyeball" the result ... useful ... not automated though ...)
- Much more known about density estimation, but we'll end here ...
- NUMERICAL INTEGRATION:
- How to compute expected values from <u>complicated</u> densities?
- (Motivation: Bayesian statistics ... next.)
- EXAMPLE: Suppose X and Y are two random variables with joint density given by $f_{X,Y}(x,y) = C g(x,y)$ for $0 \le x, y \le 1$ (with $f_{X,Y}(x,y) = 0$ for other x, y), for appropriate constant C, where

$$g(x,y) = x^2 y^3 \sin(xy) \cos(\sqrt{xy}) \exp(x^2 + y).$$

- What is, say, $\mathbf{E}(X)$??
- Well, here

$$C = \left(\int_{0}^{1} \int_{0}^{1} g(x, y) \, dx \, dy\right)^{-1}$$

Then

$$\mathbf{E}(X) = \int_0^1 \int_0^1 x \, f_{X,Y}(x,y) \, dx \, dy = \frac{\int_0^1 \int_0^1 x \, g(x,y) \, dx \, dy}{\int_0^1 \int_0^1 g(x,y) \, dx \, dy}.$$

• How to compute this??

- No analytic solution ...
- Instead, use numerical integration ...
- Break up region $[0, 1] \times [0, 1]$ into grid:
 - Let M be a large integer.
 - Let $A_{ij} = [(i-1)/M, i/M) \times [(j-1)/M, j/M)$, for i = 1, 2, ..., M and j = 1, 2, ..., M (so, M^2 sub-regions).
 - Then $[0,1] \times [0,1] = \bigcup_{i=1}^{M} \bigcup_{j=1}^{M} A_{ij}$.
 - And, for large M, g is approximately constant over A_{ij} .
 - So, e.g.

$$\int_0^1 \int_0^1 g(x,y) \, dx \, dy \ = \ \sum_{i=1}^M \sum_{j=1}^M \int \int_{A_{ij}} g(x,y) \, dx \, dy \ \approx \ \sum_{i=1}^M \sum_{j=1}^M g(i/M, \, j/M) \, (1/M^2) \, .$$

("top-right sum")

- In above, can instead replace g(i/M, j/M) by:
 - -g((i-1)/M, (j-1)/M) ("bottom-left sum");
 - $-g((i-\frac{1}{2})/M, (j-\frac{1}{2})/M)$ ("midpoint sum");
 - $\frac{1}{4} \Big(g((i-1)/M, (j-1)/M) + g((i-1)/M, j/M) + g(i/M, (j-1)/M) + g(i/M, j/M) \Big)$ ("corner-averaged sum; equivalent to Trapezoidal Rule with m = 1");
 - Trapezoidal Rule (polynomial interpolation of degree m);
 - Simpson's Rule (replace g by quadratic function which agrees at middle and endpoints);
 - $\inf_{\substack{(i-1)/M \le x \le i/M \ (j-1)/M \le y \le j/M}} g(x, y)$ ("lower sum"; always less than true integral);
 - $\sup_{\substack{(i-1)/M \le x \le i/M \\ (j-1)/M \le y \le j/M}} g(x, y)$ ("upper sum"; always <u>more</u> than true integral); etc.
 - (Differences not too large if grid size small.)
- Similarly for $\int_0^1 \int_0^1 x g(x, y) dx dy$, etc.

- So, that way, can compute expected values!
- (Homework #3!)
- Choice of M? Depends on function? Tricky issue!
- For, say, $\int_0^5 \int_0^5 \cdots$, need $(5M)^2$ sub-regions instead.
 - Not much more difficult ...
- For e.g. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots$, need to "cut off" at $\int_{a}^{b} \int_{a}^{b} \cdots$ for appropriate a and b.
 - e.g. a = -1000 and b = 1000 (?).
 - -a and b should depend on function ... how?
 - Requires $((b-a)M)^2$ sub-regions could be too many.
 - Another tricky issue!
- Higher dimensional integrals, e.g. $\int_0^1 \int_0^1 \int_0^1 \int_0^1 \cdots$?
 - Similar, but have d loops, so M^d sub-regions.
 - more time-consuming exponentially slow. ("curse of dimensionality")
- Other solutions (including Monte Carlo, MCMC) coming later!

------ END WEEK #8------

[Reminder: HW #3 due next Tuesday, 6:10 p.m.]

[File "Rhw3Q1data" updated on Nov. 2.]

[Office hours 2:30 – 3:30 on Friday Nov 9 and Monday Nov 12?]

Summary of Previous Class:

* Density estimation:

- ---- (scaled) histogram
- —— centered intervals
- kernel density estimator
- ---- (centered intervals = kernel density estimator with K = Unif[-1,1])

* Choice of bandwidth h:

—— Ideal: $h \to 0$ but $nh \to \infty$.

— measure of fit: MISE (but requires knowledge of true dens)

— RULE OF THUMB: $h \approx 1.06 n^{-1/5} sd(x_1, \dots, x_n)$.

* Numerical integration (to e.g. compute expected values):

— Break up region into M^d small sub-regions (squares/cubes)

— Approximate integrand by e.g. constant on each sub-region

/ Simpson's ...

* On larger regions, need more sub-regions.

* On infinite regions, need some sort of "cut-off".

— e.g. if cut off each coordinate at [a, b] then need $((b-a)M)^d$ sub-regions!

- Another approach: MONTE CARLO INTEGRATION:
- EXAMPLE: Want to compute $\int_0^1 \int_0^1 g(x, y) \, dx \, dy$.
 - Regard this as $\mathbf{E}[g(X, Y)]$, where X, Y i.i.d. ~ Uniform[0, 1].
- Then do Monte Carlo:
 - Sample $X_1, \ldots, X_M, Y_1, \ldots, Y_M \sim \text{Uniform}[0, 1].$
 - Estimate $\int_0^1 \int_0^1 g(x, y) dx dy$ by $\frac{1}{M} \sum_{i=1}^M g(X_i, Y_i)$.
 - Since $\{g(X_i, Y_i)\}$ i.i.d., get usual estimate of standard error:

$$se = M^{-1/2} sd(g(X_1, Y_1), \dots, g(X_M, Y_M)).$$

– e.g. $g(x,y) = \cos(\sqrt{xy})$. (file "RMCint") Easy!

- Get about 0.88 ± 0.003 ... Mathematica gives 0.879544.
- What about $\int_0^5 \int_0^4 g(x, y) \, dy \, dx$?
 - One way to think about this is,

$$\int_0^5 \int_0^4 g(x,y) \, dy \, dx = \int_0^5 \int_0^4 5 \cdot 4 \cdot g(x,y) \, (1/4) dy \, (1/5) dx = \mathbf{E}(5 \cdot 4 \cdot g(X,Y)) \, ,$$

where $X \sim \text{Uniform}[0, 5]$ and $Y \sim \text{Uniform}[0, 4]$.

- So, instead let $X_i \sim \text{Uniform}[0, 5]$, and $Y_i \sim \text{Uniform}[0, 4]$.
- Estimate becomes $\frac{1}{M} \sum_{i=1}^{M} 5 \cdot 4 \cdot g(X_i, Y_i)$. (file "RMCint2")
- Standard error: $se = M^{-1/2} sd(5 \cdot 4 \cdot g(X_1, Y_1), \dots, 5 \cdot 4 \cdot g(X_M, Y_M)).$
- Get about $-4.1 \pm 0.4 \ldots$ [with $M = 10^6$, get $-4.1 \pm 0.01 \ldots$ if M gets much larger, R has problems] \ldots Mathematica gives -4.11692.
- MORE GENERALLY, whenever can write integral as an expected value, can do Monte Carlo integration.
- e.g. $\int_0^1 \int_0^\infty h(x,y) \, dy \, dx$, where $h(x,y) = e^{-y^2} \cos(\sqrt{xy})$.
 - Can't do usual "uniform" Monte Carlo.
 - Instead, write this as $\int_0^1 \int_0^\infty (e^y h(x, y)) e^{-y} dy dx$.
 - This is the same as $\mathbf{E}[e^Y h(X, Y)]$, where $X \sim \text{Uniform}[0, 1]$ and $Y \sim \text{Exponential}(1)$.
 - So, estimate it by $\frac{1}{M} \sum_{i=1}^{M} e^{Y_i} h(X_i, Y_i)$, where $X_i \sim \text{Uniform}[0, 1]$ and $Y_i \sim \text{Exponential}(1)$ (i.i.d.).
 - File "RMCint3" ... get about 0.75 ± 0.01 ... Mathematica gives 0.767211.
- Alternatively, could write integral as $\int_0^1 \int_0^\infty (\frac{1}{5} e^{5y} h(x, y)) (5 e^{-5y}) dy dx$.
 - Then, estimate it by $\frac{1}{M} \sum_{i=1}^{M} \frac{1}{5} e^{5Y_i} h(X_i, Y_i)$, where $X_i \sim \text{Uniform}[0, 1]$ and $Y_i \sim \text{Exponential}(5)$ (i.i.d.).
 - File "RMCint4" ... get about 0.75 ± 0.04 ... larger standard error ...
 - If replace 5 by 1/5, get about $0.75 \pm 0.05 \dots$ even worse.
 - So which choice is best??
 - Whichever one minimises the standard deviation! ($\lambda \approx 1.5$?)
- Monte Carlo integration's standard deviation goes down like $M^{-1/2}$.
 - "Pretty good" convergence, but not great.
 - And, depends on the standard deviation of each individual observation.

- More coming!
- SO WHO CARES about integration, anyway?
- Motivation: BAYESIAN STATISTICS:
 - Have unknown parameter(s) θ , and a model for how the distribution of the data Y depends on θ : $\mathcal{L}(Y | \theta)$.
 - Have a <u>prior</u> distribution, representing our "initial" (subjective?) probabilities for θ : $\mathcal{L}(\theta)$.
 - Combining these gives a full joint distribution for θ and Y, i.e. $\mathcal{L}(\theta, Y)$.
 - Then <u>posterior</u> distribution of θ , $\pi(\theta)$, is then the <u>conditional</u> distribution of θ , <u>conditioned</u> on the observed data y, i.e. $\pi(\theta) = \mathcal{L}(\theta \mid Y = y)$.
- SIMPLE EXAMPLE: WEIGHT OF MOOSE:
 - Model: Average moose weighs θ kilograms (kg), with θ unknown.
 - Our best guess for prior distribution of θ is (say) $N(500, 100^2)$.
 - An individual moose's weight, in kg, has distribution (say) $N(\theta, 50^2)$.
 - Going to weigh J mooses, and record weights Y_1, Y_2, \ldots, Y_J .
- So, joint density of $(\theta, Y_1, Y_2, \ldots, Y_J)$ is:

$$\begin{aligned} f(\theta, y_1, \dots, y_J) &= f(\theta) \ f(y_1, \dots, y_J \mid \theta) = N(500, 100^2; \theta) \prod_{i=1}^J N(\theta, 50^2; y_i) \\ &= \frac{1}{\sqrt{2\pi} \times 100} \exp\left[-(\theta - 500)^2 / (2 \times 100^2)\right] \prod_{i=1}^J \left(\frac{1}{\sqrt{2\pi} \times 50} \exp\left[-(y_i - \theta)^2 / (2 \times 50^2)\right]\right) \\ &= (2\pi)^{-(J+1)/2} 100^{-1} 50^{-J/2} \exp\left[-(\theta - 500)^2 / (2 \times 100^2)) - \left(\sum_i (y_i - \theta)^2\right) / (2 \times 50^2)\right]. \end{aligned}$$

- ("joint density = prior times likelihood")

Then posterior density of θ equals this density conditioned on the observed {y_i}, which
is proportional to simply treating the {y_i} as <u>constants</u>, so it is equal to:

$$C_1 \exp\left[-\theta^2 \left(\frac{1}{2 \times 100^2} + \frac{J}{2 \times 50^2}\right) + \theta\left(\frac{500}{100^2} - \sum_i \frac{y_i}{50^2}\right) + C_2\right]$$

$$= C_3 \exp\left[-(\theta-m)^2/2\sigma^2\right],$$

where

$$\sigma^2 = \frac{1}{\frac{1}{100^2} + \frac{J}{50^2}},$$

and

$$m = \left(\frac{500}{100^2} + \sum_i \frac{y_i}{50^2}\right) \sigma^2 = \frac{\frac{500}{100^2} + \frac{\sum_i y_i}{50^2}}{\frac{1}{100^2} + \frac{J}{50^2}}.$$

- ("posterior = prior times likelihood, normalised")
- (Check: if $y_i \equiv 500$, then m = 500.)
- Since this must be a probability density, it <u>must</u> work out that $C_3 = (2\pi\sigma^2)^{-1/2}$, so the posterior distribution for θ must be $N(m, \sigma^2)$. Phew!
 - This posterior distribution represents our probabilities for θ , given the observed data y_1, y_2, \ldots, y_n .
 - Then we can compute the posterior mean, posterior variance, posterior probabilities, etc., for θ .
 - e.g. posterior mean of θ = mean of $N(m, \sigma^2) = m$, etc.
 - Don't need any numerical integration.
- But that was an extremely <u>simple</u> example!
- Less simple example: VARIANCE COMPONENTS MODEL:
 - A lake has some pollution concentration μ (unknown).
 - Have K different extractions from the lake.
 - Extraction *i* has pollution concentration θ_i (unknown).
 - Observations: Y_{i1}, \ldots, Y_{iJ} are J different measurements of θ_i $(1 \le i \le K)$.
 - Want to estimate $\mu, \theta_1, \ldots, \theta_K$, and the variances V between extractions and W between measurements.

• Statistical model: assume

$$\theta_i \sim N(\mu, V); \qquad (1 \le i \le K).$$

and

$$Y_{ij} \sim N(\theta_i, W);$$
 $(1 \le i \le K; 1 \le j \le J).$

- This defines a probability model for $V, W, \mu, \theta_1, \ldots, \theta_K, Y_{ij}$:

$$\mu$$

$$\downarrow \qquad \searrow$$

$$\theta_1 \qquad \dots \qquad \theta_K \qquad \theta_i \sim N(\mu, V)$$

$$\swarrow \qquad \searrow$$

$$Y_{11}, \dots, Y_{1J} \qquad \dots \qquad Y_{K1}, \dots, Y_{KJ} \qquad Y_{ij} \sim N(\theta_i, W)$$

• Prior distributions ("conjugate"):

$$V \sim IG(a_1, b_1);$$
 $W \sim IG(a_2, b_2);$ $\mu \sim N(a_3, b_3);$

where a_i, b_i known constants, and IG(a, b) is "inverse gamma" distribution, with density $\frac{b^a}{\Gamma(a)} e^{-b/x} x^{-a-1}$ for x > 0.

• Then for V, W > 0, joint density is:

$$f(V, W, \mu, \theta_1, \dots, \theta_K, Y_{11}, Y_{12}, \dots, Y_{KJ})$$

$$= C \left(e^{-b_1/V} V^{-a_1 - 1} \right) \left(e^{-b_2/W} W^{-a_2 - 1} \right) \left(e^{-(\mu - a_3)^2/2b_3} \right) \times \left(\prod_{i=1}^K \prod_{j=1}^J W^{-1/2} e^{-(Y_{ij} - \theta_i)^2/2W} \right)$$

$$= C e^{-b_1/V} V^{-a_1 - 1} e^{-b_2/W} W^{-a_2 - 1} e^{-(\mu - a_3)^2/2b_3} V^{-K/2} W^{-JK/2} \times \left(\sum_{i=1}^K (\theta_i - \mu)^2/2V - \sum_{i=1}^K \sum_{j=1}^J (Y_{ij} - \theta_i)^2/2W \right).$$

------ END WEEK #9---

[Collect HW#3. Assign HW#4.]

Summary of Previous Class:

* Monte Carlo integration:

- Express an integral as some expected value.
- ----- (e.g. $X \sim \text{Uniform}[0, 1], Y \sim \text{Exponential}(5), \dots$)
- —— Then do usual Monte Carlo estimate of mean.
- —— Get standard error too.
- Quite easy \ldots but *se* can be large.

* Bayesian statistics:

- Have model $\mathcal{L}(Y | \theta)$, and prior $\mathcal{L}(\theta)$.
- Gives joint distribution $\mathcal{L}(\theta, Y)$.
- ----- Then posterior = $\pi(\cdot) = \mathcal{L}(\theta | Y)$.
- Moose example: $\pi(\cdot) = N(m, v)$.

— Variance components (lake) model: joint density

$$= Ce^{-b_1/V}V^{-a_1-1}e^{-b_2/W}W^{-a_2-1}e^{-(\mu-a_3)^2/2b_3}V^{-K/2}W^{-JK/2} \times \\ \times \exp\left[-\sum_{i=1}^{K}(\theta_i-\mu)^2/2V - \sum_{i=1}^{K}\sum_{j=1}^{J}(Y_{ij}-\theta_i)^2/2W\right]$$

* Posterior distribution $\pi(\cdot)$ is then the law of $(V, W, \mu, \theta_1, \ldots, \theta_K)$, conditional on the observed data Y_{ij} . (Equivalent to treating the Y_{ij} as constants.)

* (Density function in file "Rvarcomp" ... including on log scale ...)

- * Computations difficult! What to do?
 - One solution: Markov chain Monte Carlo (MCMC).
 - Needs lots of random numbers (like regular Monte Carlo).
 - How do computers generate them?
 - PSEUDO-RANDOM NUMBERS:
 - Goal: generate an i.i.d. sequence $U_1, U_2, U_3, \ldots \sim \text{Uniform}[0, 1]$.
 - One method: LINEAR CONGRUENTIAL GENERATOR.
 - Choose (large) positive integers m, a, and b.

- Start with a "seed" value, k_0 . (e.g., current time in milliseconds)
- Then, recursively, $k_n = (ak_{n-1} + b) \mod m$, i.e. $k_n =$ remainder when $ak_{n-1} + b$ is divided by m.
- $So, 0 \le k_n \le m 1.$
- Then let $U_n = k_n/m$.
- Then $\{U_n\}$ will "seem" to be approximately i.i.d. ~ Uniform[0, 1]. (file "Rrng")
- How well does it work? (HW#4!)
- Choice of m, a, and b?
- Many issues:
 - need *m* large (so many possible values);
 - need a large enough that no obvious "pattern" between U_{n-1} and U_n .
 - need b to avoid short "cycles", to avoid repetition.
 - many statistical tests, to try to see which choices provide good randomness, avoid correlations, etc. (e.g. "diehard tests")
 - One common "good" choice: $m = 2^{32}$, a = 69,069, b = 23,606,797.
 - (More generally, can use "bitwise exclusive-or" between different pseudorandom binary tuples to increase randomness ... "generalised feedback shift register (GFSR)", "Mersenne-Twister", ...)
 - (R implementation: see "?.Random.seed" ...)
- Not "really" random, just "pseudorandom" ...
 - Can cause problems!
 - Will fail certain statistical tests ...
 - Some implementations also use external randomness, e.g. current temperature of computer's CPU.

- Or the randomness of quantum mechanics, e.g. www.fourmilab.ch/hotbits.
- But for most purposes, standard pseudorandom numbers are pretty good ...
- What about OTHER DISTRIBUTIONS?
- Once we have U_1, U_2, \ldots i.i.d. ~ Uniform[0,1] (at least approximately), how do we generate other distributions?
- With transformations, using "change-of-variable" theorem!
- e.g. to make $X \sim \text{Uniform}[L, R]$, set $X = (R L)U_1 + L$.
- e.g. to make $X \sim \text{Bernoulli}(p)$, set

$$X = \begin{cases} 1, & U_1 \le p \\ 0, & U_1 > p \end{cases}$$

• e.g. to make $Y \sim \text{Binomial}(n, p)$, either set $Y = X_1 + \ldots + X_n$ where

$$X_i = \begin{cases} 1, & U_i \le p \\ 0, & U_i > p \end{cases},$$

or set

$$Y = \max\left\{j : \sum_{k=0}^{j-1} \binom{n}{k} p^k (1-p)^{n-k} \le U_1\right\}.$$

• More generally, to make $\mathbf{P}(Y = x_i) = p_i$ for any $x_1 < x_2 < x_3 < \dots$, where $\sum_i p_i = 1$, simply set

$$Y = \max\{x_j \, ; \, \sum_{k=0}^{j-1} p(x_k) \leq U_1\}.$$

• e.g. to make $Z \sim \text{Exponential}(1)$, set $Z = -\log(U_1)$.

- (So,
$$\mathbf{P}(Z > x) = \mathbf{P}(-\log(U_1) > x) = \mathbf{P}(\log(U_1) < -x) = \mathbf{P}(U_1 < e^{-x}) = e^{-x}$$
.)

- (Then to make $W \sim \text{Exponential}(\lambda)$, set $W = Z/\lambda$.)
- What about normal dist.? By multidimensional change-of-variable theorem, if

$$X = \sqrt{2 \log(1/U_1)} \cos(2\pi U_2),$$

$$Y = \sqrt{2 \log(1/U_1)} \sin(2\pi U_2),$$

then $X, Y \sim N(0, 1)$ (independent!).

- Another approach: "INVERSE CDF METHOD":
 - Suppose want $\mathbf{P}(X \le x) = F(x)$. ("CDF")
 - For 0 < t < 1, set $F^{-1}(t) = \min\{x; F(x) \ge t\}$. ("inverse CDF")
 - Then set $X = F^{-1}(U_1)$.
 - Then $X \leq x$ if and only if $F(x) \leq U_1$.

$$- \text{ So, } \mathbf{P}(X \le x) = \mathbf{P}(F(x) \le U_1) = F(x).$$

- etc.
- So, generating (pseudo)random numbers is easy. How to <u>use</u> this?
- Monte Carlo algorithms/integration (already discussed).
- MARKOV CHAIN MONTE CARLO (MCMC)!
- Suppose have complicated, high-dimensional density π .
- <u>Want</u> samples $X_1, X_2, \ldots \sim \pi$. (Then can do Monte Carlo.)
- <u>Idea</u>: define a <u>Markov chain</u> (random process) X_1, X_2, \ldots , so for large $n, X_n \approx \pi$.
- METROPOLIS ALGORITHM (1953):
 - Choose some initial value X_0 (perhaps multi-dimensional, perhaps random).
 - Then, given X_{n-1} , choose a <u>proposal</u> move $Y_n \sim MVN(X_{n-1}, I)$ (say).
 - Let $\alpha_n = \pi(Y_n) / \pi(X_{n-1})$, and $U_n \sim \text{Uniform}[0, 1]$.
 - Then, if $U_n < \alpha_n$, set $X_n = Y_n$ ("accept"), otherwise set $X_n = X_{n-1}$ ("reject").
 - THEOREM: $\lim_{n \to \infty} \mathbf{P}(X_n \in A) = \int_A \pi(x) \, dx$, and $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n h(X_i) = \mathbf{E}_{\pi}(h) \equiv \int h(x) \, \pi(x) \, dx$.
 - (Chain is "reversible" and "irreducible" and "aperiodic" . . . STA447/2106 . . .)

- So, for large n, have $X_n \approx \pi$. ("rwm.html" Java applet)
- Note: only need to compute $\pi(Y_n) / \pi(X_{n-1})$, so multiplicative constants <u>cancel</u>.
- HOW IS THIS USEFUL?
- Can estimate, say, $\mathbf{E}_{\pi}(h) \equiv \int h(x) \, \pi(x) \, dx$ by:

$$\frac{1}{M-B}\sum_{i=B+1}^{M}h(X_i)\,,$$

where B ("burn-in") chosen large enough so $X_B \approx \pi$, and M chosen large enough to get good Monte Carlo estimates.

- EXAMPLE: $\pi(x_1, x_2) = C |\cos(\sqrt{x_1 x_2})| \ I(0 \le x_1 \le 5, 0 \le x_2 \le 4).$
 - Want to compute $\mathbf{E}_{\pi}(h)$, where $h(x, y) = e^{x_1} + (x_2)^2$.
 - Then $\pi(Y) / \pi(X) = C |\cos(\sqrt{y_1 y_2})| / |C \cos(\sqrt{x_1 x_2})| = |\cos(\sqrt{y_1 y_2})| / |\cos(\sqrt{x_1 x_2})|$, so don't need to know "C".
 - Metropolis algorithm ... works ... gets between about 34 and 44 ... but large uncertainty ... (file "Rmet") (Mathematica gets 38.7044)
- OPTIMAL SCALING:
 - Can change proposal distribution to $Y_n \sim MVN(X_n, \sigma^2 I)$ for any $\sigma > 0$.
 - Which is best?
 - If σ too small, then chain won't move much.
 - If σ too large, then will usually <u>reject</u> proposals, so chain still won't move much.
 - Optimal: need σ "just right" to avoid both extremes. ("Goldilocks Principle")
 - Can experiment ... ("rwm.html" applet, file "Rmet") ...
 - Some theory ... limited ... active area of research ...
- What about standard error, i.e. uncertainty??
 - Estimates seem to have large fluctuations ... more than the usual (iid) standard error suggests ...

- In fact: <u>true</u> standard error is actually <u>larger</u> than in iid case, due to <u>correlations</u> ...
 - Estimator = $\frac{1}{M-B} \sum_{i=B+1}^{M} h(X_i)$. Variance of estimator??
 - Let $\overline{h}(x) = h(x) \mathbf{E}_{\pi}(h)$, so $\mathbf{E}_{\pi}(\overline{h}) = 0$.
 - And, assume B large enough that $X_i \approx \pi$ for i > B.
 - Then, for large M B, variance of estimator is:

$$\approx \mathbf{E}_{\pi} \left[\left(\left(\frac{1}{M-B} \sum_{i=B+1}^{M} h(X_{i}) \right) - \mathbf{E}_{\pi}(h) \right)^{2} \right] \approx \mathbf{E}_{\pi} \left[\left(\frac{1}{M-B} \sum_{i=B+1}^{M} \overline{h}(X_{i}) \right)^{2} \right] \\ = \frac{1}{M-B} \left(\mathbf{E}_{\pi}(\overline{h}^{2}) + 2 \mathbf{E}_{\pi}(\overline{h}(X_{i})\overline{h}(X_{i+1})) + 2 \mathbf{E}_{\pi}(\overline{h}(X_{i})\overline{h}(X_{i+2})) + \dots \right) \\ = \frac{1}{M-B} \mathbf{E}_{\pi}(\overline{h}^{2}) \left(1 + 2 \operatorname{Corr}(\overline{h}(X_{i})\overline{h}(X_{i+1})) + 2 \operatorname{Corr}(\overline{h}(X_{i})\overline{h}(X_{i+2})) + \dots \right) \\ = \frac{1}{M-B} \operatorname{Var}_{\pi}(h) \left(1 + 2 \operatorname{Corr}(h(X_{i})h(X_{i+1})) + 2 \operatorname{Corr}(h(X_{i})h(X_{i+2})) + \dots \right) \\ \equiv \frac{1}{M-B} \operatorname{Var}_{\pi}(h) \left(\operatorname{varfact} \right) = (\operatorname{iid variance}) \left(\operatorname{varfact} \right).$$

[Return HW#3. (Clarify "nonparametric" density estimation.)]

Summary of Previous Class:

* Pseudo-random numbers

* Linear Congruential Generator:

$$---k_n = (ak_{n-1} + b) \mod m$$

$$---- U_n = k_n/m$$

* random? cycle length? passes statistical tests?

* Other distributions:

— generated from $\{U_n\}$ by transformations (should know this!) ...

* Metropolis Algorithm:

----- Given X_{n-1} , propose $Y_n \sim MVN(X_{n-1}, \sigma^2 I)$

— Then <u>accept</u> if $U_n < \pi(Y_n)/\pi(X_{n-1})$, else <u>reject</u>.

* Then $\mathbf{P}(X_n \in A) \to \int_A \pi(x) \, dx$.

— How quickly? Choice of σ ? Choice of M? Burn-in B? etc.

- * example: Java applet ("rwm.html")
- * example: $g(x) = |\cos(\sqrt{x_1 x_2})|$ ("Rmet")
- * Calculation: $\operatorname{Var}_{\pi}(\frac{1}{M-B}\sum_{i=B+1}^{M}h(X_i)) \approx \frac{1}{M-B}\operatorname{Var}_{\pi}(h)(\operatorname{varfact})$, where

varfact = $1 + 2 \operatorname{Corr}(h(X_i)h(X_{i+1})) + 2 \operatorname{Corr}(h(X_i)h(X_{i+2})) + \dots$

* THEREFORE, true standard error \approx (iid standard error) $\sqrt{\text{varfact.}}$ (file "Rmet") * So, to make standard error small, need M - B >> varfact.

• DIAGNOSING CONVERGENCE:

- Previous analysis ("varfact", etc.) <u>assumes</u> the chain has approximately converged within B steps.
- But convergence can be very problematic!
- e.g. multimodal distribution: $\pi = \frac{1}{2} N(0,1) + \frac{1}{2} N(10,1)$. (file "Rmet2")
- If know, then can fix problem, e.g. set $\sigma = 4$ or $\sigma = 10$. (file "Rmet2")
- But how to tell??
- Some theory ... complicated ... active area of research ... instead ...
- <u>Idea</u>: run <u>many</u> different copies of the chain, started from different initial values (from "overdispersed starting distribution" ...).
 - Then, if the different chains seem "similar", then we've hopefully converged ... otherwise we haven't.
- <u>Details</u>:
 - Do J different runs, $\{X_i^{(j)}\}_{i=0}^M$, for $1 \leq j \leq J$, each started from the same "overdispersed starting distribution".
 - Let h be functional of interest.
 - Let $\overline{h}_j = \frac{1}{M-B} \sum_{i=B+1}^M h(X_i^{(j)})$ be estimate from j^{th} run, for $1 \le j \le J$.
- "INTUITIVE DIAGNOSTIC" APPROACH:
 - Let $ESTSD = sd(\overline{h}_1, \ldots, \overline{h}_J)$. ("estimator standard error")

- If ESTSD small, then get approximately the same answer from different starting values, so hopefully estimate is accurate.
- But if ESTSD large, this suggests B or M too small. (file "Rdiag")
- "SIMPLE DIAGNOSTIC" APPROACH:
 - Let $VAR_j = \operatorname{var}(h(X_{B+1}^{(j)}), \dots, h(X_M^{(j)}))$. ("jth within-chain variance")
 - Let $WITH = mean(VAR_1, \dots, VAR_J)$. ("mean within-chain variance")
 - Let $INTER = var(h(X_{B+1}^{(1)}), \dots, h(X_{B+1}^{(J)}))$ ("inter-chain variance")
- Idea: $\underline{\text{if}} B, M$ large enough, then:
 - $\{X_{B+1}^{(j)}\}_{j=1}^{J} \approx \text{iid } \pi, \text{ so } INTER \approx v \equiv \operatorname{Var}_{\pi}(h).$
 - Also, $VAR_j \approx \operatorname{Var}_{\pi}(h) = v$. [since VAR_j uses usual (iid) estimator of var]
 - So, $WITH \approx v$.
 - So, $WITH \approx INTER$.
- BY CONTRAST, if *B*, *M* not large enough, then usually *WITH* << *v* and *INTER* >> *v*, so *WITH* << *INTER*.
- <u>Diagnostic</u>: B, M large enough if $INTER/WITH \approx 1$; not if INTER/WITH >> 1.
 - Sometimes shows convergence. (file "Rdiag2")
 - Sometimes shows <u>lack</u> of convergence. (file "Rdiag3")
- Of course, won't <u>notice</u> slow convergence unless start different chains in "different regions" ... "overdispersed starting distribution" ... "premature diagnosis of convergence" ...
- "GELMAN-RUBIN" APPROACH (1992):
 - Replace INTER by $BET = (M-B) \operatorname{var}(\overline{h}_1, \dots, \overline{h}_J)$. ("between-chain variance")
 - Uses all of $\{X_i^{(j)}\}_{i=B+1}^M$, not just $X_M^{(j)}$ good.
 - $\underline{\mathrm{if}} X_{B+1} \approx \pi$, then:

- $\operatorname{Var}(\overline{h}_j) \approx (iid \text{ variance}) (\operatorname{varfact}) = \frac{v}{M-B} (\operatorname{varfact}).$

- So, $BET \approx (M - B) \frac{v}{M - B}$ (varfact) = v(varfact).

- <u>iid</u> case (varfact = 1): $BET \approx WITH$. (file "Rgel")
- stationary case $(X_0 \sim \pi)$: $\frac{BET}{WITH} \approx \text{varfact.}$ (file "Rgel2")
- fast-converging case $(X_B \approx \pi)$: $\frac{BET}{WITH} \approx \text{varfact.}$ (file "Rgel3")
- slow-converging case: $\frac{BET}{WITH} >>$ varfact. (file "Rgel4")
- So, <u>diagnostic</u> is: run good if $\frac{BET}{WITH}$ is "small enough".
- How small is small enough??

• One option: require
$$\frac{BET}{WITH} < 1 + 0.44(M - B)$$
, i.e. $M - B > 2.3(\frac{BET}{WITH} - 1)$.

- (Comes from requiring " $\sqrt{R} < 1.2$ " in their paper . . .)
- Roughly: $M B > 2.3(\text{varfact} 1) \dots$ similar to previous conclusion ...
- For fast-mixing chains, this will be satisfied after, say, M = 1000. (file "Rgel3")
- But for slow-mixing chains, it often won't. (good) (file "Rgel4")
 - <u>Remark</u>: for slow-mixing chains, "varfact" gets <u>underestimated</u>, since each chain is "stuck" in its own small region of the state space ...
- Overall, convergence diagnostics are <u>important</u>, but <u>problematic</u> ...
- OTHER VERSIONS OF MCMC (BESIDES METROPOLIS ALGORITHM):
- METROPOLIS-WITHIN-GIBBS ALGORITHM:
 - Propose to move just <u>one</u> coordinate at a time, leaving all the other coordinates <u>fixed</u> (since changing all coordinates at once may be difficult or limiting).
 - Can choose coordinates in sequence (systematic-scan, file "Rmwg"), or uniformly at random (random-scan, file "Rmwg2").
 - Can be more efficient/successful in hard problems. (HW#4)

END WEEK #11-

[Reminders: HW#4 due Dec 4, 6:10pm. Exam Dec 12, 7–10pm, NR25 (William Doo Auditorium, 45 Willcocks Street, basement), no aids allowed. **Exam Notes:** Be sure to <u>explain</u> all of your answers in detail. You do <u>not</u> need to simplify complicated arithmetic expressions. And, you do <u>not</u> need to write an R program unless the question explicitly asks you to.]

[Office hours: 2:30–3:30 this Friday (Nov 30) and Monday (Dec 3).]

Summary of Previous Class:

* Diagnosing convergence

—— Intuitive Diagnostic

- —— Simple Diagnostic
- —— Gelman-Rubin Diagnostic

* Metropolis-within-Gibbs algorithm ("Rmwg", "Rmwg2")

- METROPOLIS-HASTINGS ALGORITHM:
 - Previous Metropolis algorithm works provided proposal distribution is <u>symmetric</u> (i.e., same prob of proposing y from x, as of proposing x from y), e.g. $MVN(X_{n-1}, \sigma I)$.
 - But what if it isn't?
 - Write q(x, y) for the density of the proposal Y_n , given that $X_{n-1} = x$.
 - Then, in Metropolis algorithm, replace $\alpha_n = \frac{\pi(Y_n)}{\pi(X_{n-1})}$ by $\alpha_n = \frac{\pi(Y_n) q(Y_n, X_{n-1})}{\pi(X_{n-1}) q(X_{n-1}, Y_n)}$.
 - Everything else remains the same.
 - Intuition: if q(x,y) >> q(y,x), then Metropolis chain would spend too much time at y and not enough at x, so need to accept <u>fewer</u> moves $x \to y$.
- EXAMPLE: again $\pi(x_1, x_2) = C |\cos(\sqrt{x_1 x_2})| \ I(0 \le x_1 \le 5, 0 \le x_2 \le 4)$, and $h(x_1, x_2) = e^{x_1} + (x_2)^2$.
 - Proposal distribution: $(Y_n | X_{n-1}) \sim MVN(X_{n-1}, \sigma^2 (1 + |X_{n-1}|^2)^2 I).$
 - (Intuition: larger proposal variance if farther from center.)

- $\ {\rm So}, \, q(x,y) = C \, (1+|x|^2)^{-2} \, \exp(-|y-x|^2 \, / \, 2 \, \sigma^2 (1+|x|^2)^2).$
- So, can run Metropolis-Hastings algorithm for this example. (file "RMH")
- Usually get between 34 and 43, with claimed standard error ≈ 2 . (Recall: Mathematica gets 38.7044.)

• INDEPENDENCE SAMPLER:

- Proposals $\{Y_n\}$ are i.i.d. from some fixed distribution (say, $Y_n \sim MVN(0, I)$).
- Then q(x, y) = q(y), depends only on y.
- So, replace α_n by $\alpha_n = \frac{\pi(Y_n) q(X_{n-1})}{\pi(X_{n-1}) q(Y_n)}$.
- Special case: if $q(y) \equiv \pi(y)$, i.e. propose <u>exactly</u> from target density π , then $\alpha_n \equiv 1$, i.e. make great proposals, and always accept them!
- METROPOLIS-HASTINGS-WITHIN-GIBBS:
 - From $X_{n-1} = x$, propose just <u>one</u> coordinate *i* at a time (either systematic-scan or random-scan), from some non-symmetric density $q_i(x, y)$.
 - Then $\alpha_n = \frac{\pi(Y_n) q_i(Y_n, X_{n-1})}{\pi(X_{n-1}) q_i(X_{n-1}, Y_n)}$ as usual.

• GIBBS SAMPLER:

- Version of Metropolis-Hastings-within-Gibbs.
- Proposal distribution for i^{th} coordinate is equal to the conditional distribution of that coordinate (according to π), conditional on the values of all the other coordinates.
- Then $q_i(x, y) = C(x^{(-i)}) \pi(y)$, where $x^{(-i)}$ means all coordinates except i^{th} one, and $C(x^{(-i)})$ is the appropriate normalising constant (which depends on $x^{(-i)}$).
- (Then we'll have $x^{(-i)} = y^{(-i)}$, and $C(x^{(-i)}) = C(y^{(-i)})$.)
- Then $\alpha_n = \frac{\pi(Y_n) q_i(Y_n, X_{n-1})}{\pi(X_{n-1}) q_i(X_{n-1}, Y_n)} = \frac{\pi(Y_n) C(Y_n^{(-i)}) \pi(X_{n-1})}{\pi(X_{n-1}) C(X_{n-1}^{(-i)}) \pi(Y_n)} = 1.$
- So, always accept.

- EXAMPLE: Variance Components Model
 - Update of μ (say) should be from conditional density of μ , conditional on current values of all the other coordinates: $\mathcal{L}(\mu | V, W, \theta_1, \dots, \theta_K, Y_{11}, \dots, Y_{JK})$.
 - This conditional density is proportional to the full joint density, but with everything except μ treated as constant.
 - Full joint density is:

$$= Ce^{-b_1/V}V^{-a_1-1}e^{-b_2/W}W^{-a_2-1}e^{-(\mu-a_3)^2/2b_3}V^{-K/2}W^{-JK/2} \times \\ \times \exp\left[-\sum_{i=1}^{K}(\theta_i-\mu)^2/2V - \sum_{i=1}^{K}\sum_{j=1}^{J}(Y_{ij}-\theta_i)^2/2W\right]$$

- So, conditional density of μ is

$$C_2 e^{-(\mu - a_3)^2/2b_3} \exp\left[-\sum_{i=1}^K (\theta_i - \mu)^2/2V\right].$$

This equals

$$C_3 \exp\left(-\mu^2 \left(\frac{1}{2b_3} + \frac{K}{2V}\right) + \mu \left(\frac{a_3}{b_3} + \frac{1}{V}\sum_{i=1}^K \theta_i\right)\right).$$

- This is N(m, v), where $1/2v = \frac{1}{2b_3} + \frac{K}{2V}$ and $m/v = \frac{a_3}{b_3} + \frac{1}{V} \sum_{i=1}^{K} \theta_i$.
- Solve: $v = b_3 V / (V + K b_3)$, and $m = (a_3 V + b_3 \sum_{i=1}^{K} \theta_i) / (V + K b_3)$.
- So, in Gibbs Sampler, each time μ is updated, we sample it from N(m, v) for this m and v (and always accept).
- <u>Similarly</u>, conditional distribution for V is:

$$C_4 e^{-b_1/V} V^{-a_1-1} V^{-K/2} \exp\left[-\sum_{i=1}^K (\theta_i - \mu)^2/2V\right], \quad V > 0$$

- Recall that "IG(r,s)" has density $\frac{s^r}{\Gamma(r)} e^{-s/x} x^{-r-1}$ for x > 0.

- So, conditional distribution for V equals $IG(a_1 + K/2, b_1 + \frac{1}{2}\sum_{i=1}^{K}(\theta_i - \mu)^2)$.

- <u>And</u>, conditional dist. for W equals $IG(a_2 + KJ/2, b_2 + \frac{1}{2}\sum_{i=1}^{K}\sum_{j=1}^{J}(Y_{ij} \theta_i)^2)$.
- <u>And</u>, for θ_i $(1 \le i \le K)$, conditional distribution (exercise: verify this!) is:

$$N\left(\frac{V\sum_{j=1}^{J}Y_{ij}+W\mu}{JV+W}, \frac{VW}{JV+W}\right)$$

- So, in this case, the systematic-scan Gibbs sampler proceeds by:
 - Update V from its conditional distribution $IG(\ldots, \ldots)$.
 - Update W from its conditional distribution $IG(\ldots, \ldots)$.
 - Update μ from its conditional distribution $N(\ldots,\ldots)$.
 - Update θ_i from its conditional distribution $N(\ldots, \ldots)$, for $i = 1, 2, \ldots, K$.
 - Repeat all of the above M times.
 - Not on homework ... but do try it!
- What OTHER tricks are there? We have already seen one ...
- IMPORTANCE SAMPLING:
- Suppose want to evaluate $I = \int h(x) \pi(x) dx$.
 - Can't sample iid $\sim \pi$, so can't do classical Monte Carlo.
 - Instead, re-write this as $I = \int h(x) \frac{\pi(x)}{f(x)} f(x) dx$, where f is easily sampled from.
 - Then $I = \mathbf{E}\left(h(X) \frac{\pi(X)}{f(X)}\right)$, where $X \sim f$.
 - Can then do classical (iid) Monte Carlo integration, get standard errors etc.
 - (Like what we did before with e.g. $X \sim \text{Exponential}(1)$, i.e. $f(x) = e^{-x}$.)
 - However, the function $h(x) \frac{\pi(x)}{f(x)}$ may be highly variable, leading to large standard error and poor estimates.
- REJECTION SAMPLER (another way to iid sample from π):
 - Suppose there is some other easily-sampled density f, and known K > 0, such that $K f(x) \ge \pi(x)$ for all x.

- (So, need to know <u>normalising constant</u> for π .)
- Sample $X \sim f$, and $U \sim \text{Uniform}[0, 1]$.
- If $U \leq \pi(X)/Kf(X)$, then <u>accept</u> X (as a draw from π).
- Otherwise, <u>reject</u> X and start over again!
- Conditional on accepting, we have

$$\begin{aligned} \mathbf{P}\Big(X \le y \,|\, U \le \pi(X)/Kf(X)\Big) &= \frac{\mathbf{P}\big(X \le y, \ U \le \pi(X)/Kf(X)\big)}{\mathbf{P}\big(U \le \pi(X)/Kf(X)\big)} \\ &= \frac{\int_{-\infty}^{y} f(x) \,(\pi(x)/Kf(x)) \,dx}{\int_{-\infty}^{\infty} f(x) \,(\pi(x)/Kf(x)) \,dx} &= \frac{\int_{-\infty}^{y} \pi(x) \,dx}{\int_{-\infty}^{\infty} \pi(x) \,dx} = \int_{-\infty}^{y} \pi(x) \,dx. \end{aligned}$$

- So, conditional on accepting, $X \sim \pi$. Good! iid!
- However, probability of accepting may be very <u>small</u>, in which case get very <u>few</u> samples. (Plus need normalising constant.)
- Example: $\pi = N(0, 1)$, i.e. $\pi(x) = (2\pi)^{-1/2} \exp(-x^2/2)$.
 - Want: $\mathbf{E}_{\pi}(X^4)$, i.e. $h(x) = x^4$.
 - Let f be double-exponential distribution, i.e. $f(x) = \frac{1}{2} \exp(-|x|)$.
- If K = 8, then:
 - For $|x| \le 2$, $Kf(x) \ge 8\frac{1}{2} \exp(-2) \ge (2\pi)^{-1/2} \ge \pi(x)$.
 - For $|x| \ge 2$, $Kf(x) = 8\frac{1}{2} \exp(-|x|) \ge 8\frac{1}{2} \exp(-x^2/2) \ge (2\pi)^{-1/2} \exp(-x^2/2) = \pi(x)$.
- So, can apply rejection sampler with this f and K. (file "Rrej")

------ END WEEK #12-------

[Collect HW#4 ... discuss hw4clar.pdf etc. ...]

[Final exam Dec 12, 7–10pm, NR25 ... office hours afternoon of Dec 11?]

[Usefulness of the reference books?]

[Last class ... 47 posted R programs ... 703 e-mails ...]

Summary of Previous Class:

- * Metropolis-Hastings algorithm ("RMH")
- * Independence Sampler
- * Metropolis-Hastings-within-Gibbs
- * Gibbs sampler
- Example: variance components model
- —— How to compute conditional distributions
- * Importance Sampling
- * Rejection Sampler ("Rrej")
 - EM ALGORITHM:
 - Suppose want to maximise a likelihood $\mathcal{L}(\theta | y)$, for an unknown parameter θ , given observations y.
 - Suppose it is <u>easy</u> to maximise $\mathcal{L}(\theta \mid y, z)$.
 - However, we do <u>not</u> observe z. ("missing data") ("data augmentation")
 - Iterative algorithm:
 - Initial guess $\hat{\theta}$ for θ .
 - Then, compute $\hat{z} = \mathbf{E}[z | y, \theta = \hat{\theta}]$. ("E step")
 - Then, consider $Q_{\hat{z}}(\theta) \equiv \mathcal{L}(\theta \mid y, \ z = \hat{z}).$
 - Find $\hat{\theta}$ to maximise $Q_{\hat{z}}$. ("M step")
 - Repeat!
 - EXAMPLE #1: $y, z \sim \text{Exponential}(\lambda)$, i.i.d.

- Suppose observe y, but not z.
- What is MLE for λ ?

- If <u>knew</u> y and z, then MLE would be $\hat{\lambda} = \frac{1}{\text{sample mean}} = \frac{1}{\frac{y+z}{2}} = \frac{2}{y+z}$.

- But we don't know z!
- EM algorithm proceeds by:
 - Start with initial guess $\hat{\lambda}$ for λ .
 - E-step: Let $\hat{z} = \mathbf{E}[z \mid y, \hat{\lambda}] = 1/\hat{\lambda}$.
 - M-step: Let $\hat{\lambda}$ be MLE for λ given $y \text{ and } z = \hat{z}$, i.e. $\hat{\lambda} = \frac{1}{\frac{y+\hat{z}}{2}} = \frac{2}{y+\hat{z}}$.
 - Repeat!
- Numerical example: y = 10, start with $\hat{\lambda} = 2$. (file "REM")
 - $\hat{\lambda}$ converges to 0.1 = 1/y (usual MLE for Exponential(λ)).
 - $-\hat{z}$ converges to $10 = y = 1/\hat{\lambda}$.
 - Not too surprising ...
- EXAMPLE #2: N individuals. $R_i \sim \text{Poisson}(\lambda)$ (iid).
 - Let $n_j = \#\{i : R_i = j\}.$
 - Observe n_j for $j \ge 2$, plus observe $n_* \equiv n_0 + n_1$, but do <u>not</u> observe n_0 or n_1 .
 - (e.g. only get informed when $R_i \ge 2$)
- What is MLE for λ ??
 - Well, if knew <u>all</u> the n_i , then MLE would be $\hat{\lambda} = \frac{1}{N} \sum_{j=1}^{\infty} j n_j$. (True since full MLE equals sample mean.)
 - But we don't know n_0 or n_1 , just their sum $n_* = n_0 + n_1$. What to do?
- Use EM algorithm, with missing data $z = n_1$.
 - Initial guess $\hat{\lambda}$.

- E-step: set $\hat{z} = \mathbf{E}[z \mid \hat{\lambda}, n_*, n_2, n_3, \ldots] = \frac{\hat{\lambda}}{1+\hat{\lambda}} n_*$. (True since $\mathbf{P}(R_i = 1 \mid R_i = 0 \text{ or}$ 1) = $\frac{\mathbf{P}(R_i=1)}{\mathbf{P}(R_i=0) + \mathbf{P}(R_i=1)} = \frac{e^{-\lambda} \lambda^1 / 1!}{e^{-\lambda} \lambda^0 / 0! + e^{-\lambda} \lambda^1 / 1!} = \frac{\lambda}{1+\lambda}$.)
- M-step: set $\hat{\lambda} = \frac{1}{N} \left(z + \sum_{j=2}^{\infty} j n_j \right)$. (True since full MLE equals sample mean.)
- Repeat!
- Run on data simulated from Poisson(2.7). (file "REM2")
 - $\hat{\lambda}$ converges to about 2.786; close to "true" value of 2.7.
 - $-\hat{z}$ converges to about 179.5, out of $n_* = 244$.
 - Makes sense since $(\lambda/(1+\lambda))n_* = 2.7/3.7 * 244 \doteq 178.05$.
- WHAT ABOUT CONVERGENCE?
 - Not hard to see that each iteration can only <u>increase</u> $\mathcal{L}(y | \theta = \hat{\theta})$.
 - So, under differentiability conditions, at least should converge to a <u>critical</u> point of the likelihood (e.g. Jones, Thm 3.4.5.)
 - However, <u>not</u> guaranteed to converge to MLE in general.
 - Even if it converges, the convergence is <u>slow</u> at the end (usually just "geometric" [a.k.a. "linear"], i.e. $e_{n+1} = re_n$ for some r < 1).
- EXAMPLE #3: N individuals. For each individual i:
 - $-C_i \sim \text{Bernoulli}(\xi).$ ("censoring indicator")
 - $-R_i \sim \text{Poisson}(\lambda)$. (all independent)
 - Observe $Y_i = R_i I(C_i = 0)$, i.e. observe count R_i , or <u>zero</u> if it was censored.
 - Let $n_j = \#\{i : Y_i = j\}$. (observed counts)
 - So, don't know how many of n_0 were from $C_i = 1$ [censored], and how many from $C_i = R_i = 0$ [genuine zeroes].
- What is MLE of (ξ, λ) ??

• Well, if knew $z \equiv \#\{i : C_i = 1\}$, then would have

$$\mathcal{L}(\xi,\lambda \,|\, \{n_j\},z) \;=\; C\; \xi^z (1-\xi)^{N-z} \; (e^{-\lambda})^{n_0-z} \prod_{j=1}^{\infty} \left(\frac{\lambda^j}{j!} e^{-\lambda}\right)^{n_j},$$

and MLE would be empirical means, i.e. $\hat{\xi} = z/N$, and $\hat{\lambda} = \frac{1}{N-z} \sum_{j=1}^{\infty} j n_j$.

- So, use EM algorithm! (Here $y = \{n_j\}$.)
- Start with initial guesses $\hat{\xi}$ and $\hat{\lambda}$.
- E-step: let $\hat{z} = \mathbf{E}[z | \{n_j\}, \hat{\xi}, \hat{\lambda}] = \frac{\hat{\xi}}{\hat{\xi} + (1 \hat{\xi})e^{-\hat{\lambda}}} n_0.$ (True since $\mathbf{P}(C_i = 1 | Y_i = 0) = \frac{\hat{\xi}}{\hat{\xi} + (1 \hat{\xi})e^{-\hat{\lambda}}}.$)
- M-step: let $\hat{\xi}$ and $\hat{\lambda}$ be the MLE if this were the true z: $\hat{\xi} = \hat{z}/N$, and $\hat{\lambda} = \frac{1}{N-\hat{z}} \sum_{j=1}^{\infty} j n_j$.
- Numerical example (from Thisted p. 188): $n_0 = 3062, n_1 = 587, n_2 = 284, n_3 = 103, n_4 = 33, n_5 = 4, n_6 = 2.$ (N = 4075) (file "REM3")
 - $\hat{\xi}$ converges to about 0.615; $\hat{\lambda}$ converges to about 1.038.
 - (But convergence slow at end ...)
- THE END!
 - Good luck on exam, second semester, etc.