
Simultaneous drift conditions for Adaptive Markov

Chain Monte Carlo algorithms

Yan Bai∗

January 2009

Abstract

In the paper, we mainly study the ergodic property of adaptive MCMC algorithms. Suppose

that the diminishing adaptation condition and simultaneous polynomial ergodicity hold. We

find that either when the number of drift conditions is greater than or equal to two, or when

the number of drift conditions having some specific form is one, the adaptive MCMC algorithm

is ergodic. For adaptive MCMC algorithm with Markovian adaptation, the algorithm satisfy-

ing simultaneous polynomial ergocidity is ergodic without those restrictions. We also discuss

some recent results related to this topic, and show that given some condition, the containment

condition is necessary for the ergodicity of adaptive algorithm .

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are widely used for approximately sampling

from complicated probability distributions. However, there are some limitations for this method,

because it is often necessary to tune the scaling and other parameters before the algorithm will

converge efficiently.

Adaptive MCMC methods using regeneration times and other complicated constructions have

been proposed by Gilks et al. [8], Brockwell and Kadane [6], and elsewhere. More recently, Adaptive

MCMC methods has been used to improve convergence via a self-studying procedure. In this

direction, a key step was made by Harrio et al. [9], who proposed an adaptive Metropolis algorithm

attempting to optimize the proposal distribution, and proved that a particular version of this

algorithm correctly converges weakly to the target distribution. Andrieu and Robert [2] observed

that the algorithm of Haario et al. [9] can be viewed as a version of the Robbins-Monro stochastic
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control algorithm (Robbins and Monro, [12]). The results of Haario et al. were then generalized

by Atchadé and Rosenthal [4] and Andrieu and Moulines [1], proving convergence of more general

adaptive MCMC algorithms.

Roberts and Rosenthal [13] (RR) use a coupling method for adaptive MCMC algorithm to

show that its ergodicity is implied by the containment condition and the diminishing adaptation

condition, based on the basic assumptions: each transition kernel Pγ on the state space X and the

adaptive parameter space Y (γ ∈ Y), is φ-irreducible, aperiodic and admits a nontrivial unique finite

invariant probability measure π. The diminishing adaptation condition is relatively easy to check,

and commonly the adaptive strategy is designed artificially. However, the containment condition is

really abstract and hard to check. In their paper, they prove that simultaneous strongly aperiodic

geometric ergodicity ensures the containment condition.

Based on [13], Yang [16], and Atchadé and Fort [3] (AF) respectively tackle the open problem.

Both results are very interesting. Yang assume that the adaptive parameter space is compact under

some metric, and connects it with the regeneration decomposition to find the uniform bound of the

distance
∥∥Pnγ (x, ·)− π(·)

∥∥ for all γ. Once this condition given, the distance
∥∥Pnγ (x, ·)− π(·)

∥∥ can

be uniformly bounded by the test function. The boundedness of the test function sequence V (Xn)

can ensure the containment condition.

Under some situations, to directly check the containment condition is quite hard. AF use similar

coupling method as that in [13] to prove an attractive and better result when adaptive MCMC

algorithm is restricted to Markovian adaptation. They assume that uniformly strongly aperiodicity,

simultaneously drift condition in weakest form, and uniform convergence on any sublevel set of the

test function V (·). The idea is that once the chain comes into some ”big” sublevel set, the coupling

method could be applied conditioned on starting from this set. Indeed, their result implies that the

stochastic process V (Xn) is bounded in probability.

In Section 2 we give some necessary notations. In Section 3 we present Yang’s, and AF’s

conditions (respectively (Y1)-(Y4) and (M1)-(M3)) and results (respectively Theorem 3.3 and The-

orem 3.4), and give some comments for both results. In Section 4 we provide a necessary condition

of the ergodicity conditioned on the condition (A3). In Section 5 we present our conditions and

main result (Theorem 5.3).

2 Terminology

Let π be a fixed target probability distribution on the state space X with σ-algebra F .

Consider the family {Pγ}γ∈Y with the state space X and the adaptive parameter space Y
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where each Markovian transition kernel Pγ is time-homogeneous, φγ-irreducible and aperiodic with

stationary measure π(·). Define the filtration Fn = σ(Xk,Γk : 0 ≤ k ≤ n). The adaptive Markov

chain Monte Carlo algorithm (adaptive MCMC) {(Xn,Γn)} is a chain which at each time n, a

random Fn-measurable transition kernel Γn is selected basing on the history information with the

property:

P (Xn+1 ∈ A | Fn) = P (Xn+1 ∈ A | Xn,Γn) = PΓn(Xn+1 ∈ A | Xn). (1)

Thus,

P (Xn+1 ∈ dxn+1,Γn+1 ∈ dγn+1 | Fn)

= P (Xn+1 ∈ dxn+1 | Xn,Γn)P (Γn+1 ∈ dγn+1 | Xn+1 = xn+1,Fn).

So, if Γn+1 is σ(Xn,Γn)-measurable, the adaptive MCMC algorithm is called Markovian Adaptation,

i.e. the pair process {(Xn,Γn)} is a time-inhomogeneous Markov Chain.

Define P (f(X) ∈ · | X0 = x0,Γ0 = γ0) := P(x0,γ0) (f(X) ∈ ·) for some measurable function f .

Denote the corresponding expectation by E(x0,γ0) [f(X)]. Define the first return time and the ith

return time to the set C from the time n respectively: τn,C = τn,C(1) := min {k ≥ 1 : Xn+k ∈ C}

and τn,C(i) := min {k > τn,C(i− 1) : Xn+k ∈ C} for n ≥ 0 and i > 1.

Say the adaptive algorithm {Xn} with adaptive scheme {Γn} is ergodic if for any initial point

(x0, γ0) ∈ X × Y, limn→∞
∥∥P(x0,γ0)(Xn ∈ ·)− π(·)

∥∥ = 0, where ‖·‖ is the total variation norm

distance, i.e. ‖µ(·)− ν(·)‖ = supA∈F |µ(A)− ν(A)|.

The diminishing adaptation condition: limn→∞Dn = 0 in probability, where

Dn := sup
x∈X

∥∥PΓn+1(x, ·)− PΓn(x, ·)
∥∥ , (2)

is Fn+1-measurable random variable. The condition means that the change of adaptive kernel turns

to be zero. It is relatively easy to check, because the adaptive scheme is artificially designed.

For a non-negative function V , the process V (Xn) is bounded in probability if given any (x0, γ0) ∈

X × Y,

∀δ > 0, ∃N > 0, M > 0 such that for n > N,P(x0,γ0)(V (Xn) > M) < δ.

The ”ε-convergence time”

Mε(x, γ) := inf
n

{
n ∈ N+ :

∥∥Pnγ (x, ·)− π(·)
∥∥ < ε

}
: X × Y → N+. (3)

The containment condition is that for any ε > 0, the stochastic process {Mε(Xn,Γn)}n is bounded

in probability given any starting point given any (x0, γ0) ∈ X ×Y, i.e. given any (x0, γ0) ∈ X ×Y,

∀ε > 0, ∀δ > 0, ∃K > 0, such that P(x0,γ0)(Mε(Xn,Γn) > K) < δ for all n. Indeed, the containment
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containment condition means that the sequence Mε(Xn,Γn) is tightness. However, since Mε(x, γ) is

integer-value, so the tightness is equivalent to bounded in probability. From intuition, the condition

means that the time that transition kernels get close to the target within ε is bounded. Call the

adaptive parameter process Γn is bounded in probability if ∀ε > 0,∃N > 0, some compact set B ⊂

Y, such that for n > N,P (Γn ∈ Bc) < ε.

3 Simultaneous Drift Conditions

Before studying the simultaneous drift conditions, we present RR’s result about adaptive MCMC

algorithms.

Theorem 3.1 (Roberts and Rosenthal [13]). Any adaptive MCMC algorithm satisfying the con-

tainment condition and the diminishing adaptation, is ergodic to the stationary measure π.

Remark 3.1. In [13], RR give one condition: simultaneously strongly aperiodically geometrically

ergodic which can ensure the containment condition. In the definition, the drift conditions have the

same form: PγV (x) ≤ λV (x) + b1C(x) for all γ ∈ Y. However, if Γn is bounded in probability, the

containment condition is implied by that in each compact subset B of Y, the drift conditions have

the same form: PγVB(x) ≤ λBVB(x) + bB1C(x). More generally, see the following corollary.

Corollary 3.2. Suppose that the parameter space Y is a metric space, and the adaptive parameter

{Γn} is bounded in probability; for any compact set K ⊂ Y, for any ε > 0, the local ε-convergence

time M̃ε(Xn) := inf
m

{
m ∈ N+ : supγ∈K

∥∥Pmγ (Xn, ·)− π(·)
∥∥ < ε

}
is bounded in probability; and the

diminishing adaptation. Then the adaptive MCMC algorithm (Xn,Γn) is ergodic.

The proof is trivial and omitted.

RR propose one open problem in [13]. Yang [16] gives the following conditions to tackle the

problem:

Y1: There exist a constant δ > 0, and set C ∈ F , and a probability measure νγ(·) for γ ∈ Y, such

that Pγ(x, ·) ≥ δ1C(x)νγ(·) for γ ∈ Y;

Y2: all kernels uniformly satisfy the weakest drift condition: PγV ≤ V − 1 + b1C , where V : X →

[1,∞) and π(V ) <∞;

Y3: Y is compact under the metric d(γ1, γ2) = sup
x∈X
‖Pγ1(x, ·)− Pγ2(x, ·)‖;

Y4: the stochastic process {V (Xn)}n is bounded in probability.
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Theorem 3.3 (Yang [16]). Suppose the diminishing adaptation condition holds. The conditions

(Y1)-(Y4) ensure the ergodicity of adaptive MCMC algorithms.

Remark 3.2.

1. In Yang’s proof, both (Y1) and (Y2) can ensure that each transition kernel is ergodic to π. Both

(Y3) and (Y4) imply that the total variation distance between Pγ and π converges to zero uniformly

on Y.

2. Consider the condition π(V ) <∞ in (Y2). For each Pγ , since the chain X(γ)
n from the transition

kernel Pγ is recurrent, for anyA ⊂ X with π(A) > 0, π(V ) =
∫
A π(dy)Eγ

[∑τA−1
i=0 V (X(γ)

i )|X(γ)
0 = y

]
.

If there exists a small set C1 ⊂ X with supx∈C1
Eγ

[∑τC1
−1

i=0 V (X(γ)
i )|X(γ)

0 = x
]
< ∞, define

Uγ(x) = Eγ

[∑σA
i=0 V (X(γ)

i )|X(γ)
0 = x

]
. Hence, PγUγ − Uγ ≤ −V (x) + b11C1 where

b1 = supx∈C1
Eγ

[∑τA−1
i=0 V (X(γ)

i )|X(γ)
0 = x

]
. It is well known that Uγ is the minimal pointwise

test function. If there exists an upper bound test function U ≥ Uγ for any γ ∈ Y, then there

exists simultaneous drift condition. E.g. if supγ∈Y supx∈C1
Eγ

[∑τA−1
i=0 V (X(γ)

i )|X(γ)
0 = x

]
< ∞,

then U = supγ∈Y Uγ . Under this situation, (Ys) is a special case of the condition (As) in Section 5.

We show that the condition (Y3) is unnecessary (See Theorem 5.3, Remark 5.2 and Remark 5.11).

(Y1) is also too strong and can be replaced by (A1) (See Theorem 5.3).

AF [3] also give the following conditions to study the ergodicity of adaptive MCMC with Marko-

vian adaptation:

M1: there exists a probability measure ν(·), a constant δ > 0, and set C ∈ F such that Pγ(x, ·) ≥

δ1C(x)ν(·) for γ ∈ Y;

M2: there exists a measurable function V : X → [1,∞) and a positive constant b > 0 such that

for any γ ∈ Y, (PγV )(x)− V (x) ≤ −1 + b1C(x);

M3: for any sublevel set Dl = {x ∈ X : V (x) ≤ l} of V , limn→∞ supDl×Y
∥∥Pnγ (x, ·)− π(·)

∥∥
TV

= 0.

Theorem 3.4 (Atchadé and Fort [3]). Suppose the diminishing adaptation condition holds. The

conditions (M1)-(M3) imply the ergodicity of adaptive MCMC algorithm with Markovian adaptation.

Remark 3.3.

1. The condition (M1) can be replaced with the condition (Y1) in the theorem. The reason is

that for large enough M > 0, on the any set DM = {x : V (x) ≤M} ⊇ C, the simultaneous drift

conditions (PγV )(x)−V (x) ≤ −1+M1DM (x), also holds. Only the expectation of the hitting time
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of the sublevel set DM is used in the proof (see details in [3]).

2. Since ∣∣P(x0,γ0)(V (Xn) > M)− π(Dc
M )
∣∣ ≤ ∥∥P(x0,γ0)(Xn ∈ ·)− π(·)

∥∥ .
M can be taken extremely large such that π(Dc

M ) < ε. (M1-M3) and the diminishing adaptation

condition imply that R.H.S. of the above equation converges to zero. So, V (Xn) is bounded in

probability.

3. In Section 4 we show that under some condition, the containment condition is a necessary

condition of ergodicity of adaptive MCMC provided that (M3). From another view, AF’s proof

does apply the coupling method to check the containment condition by using the diminishing

condition and simultaneous drift conditions.

4 The necessary condition of the ergodicity

In this section, we study the necessary condition of the ergodicity of adaptive algorithm. One

example in [5] (Example 3.1) is given to show that only the diminishing adaptation condition can

not ensure the ergodicity. In that example, the containment condition is not satisfied. There

is another example to show that the containment condition is also not necessary in [15]. In the

following theorem, we prove that under some additional condition similar to (M3), the containment

condition is necessary for the ergodicity of adaptive algorithms.

Theorem 4.1 (The necessity of the containment condition). Suppose that there exists an increasing

sequence of sets Dk ↑ X on the state space X , such that for any k > 0,

lim
n→∞

sup
Dk×Y

∥∥Pnγ (x, ·)− π(·)
∥∥ = 0. (4)

If the adaptive MCMC algorithm is ergodic then the containment condition holds.

Proof: Fix ε > 0. For any δ > 0, taking K > 0 such that π(DcK) < δ/2. For the set DK , there

exists M such that

sup
DK×Y

∥∥PMγ (x, ·)− π(·)
∥∥ < ε.

Hence, for any (x0, γ0) ∈ X ×Y, by the ergodicity of the adaptive MCMC {Xn}n, there exists some

N > 0 such that n > N , ∣∣P(x0,γ0)(Xn ∈ DcK)− π(DcK)
∣∣ < δ/2.

So, for (Xn,Γn) ∈ (DK ,Y),

[Xn ∈ DK ] = [(Xn,Γn) ∈ DK × Y] ⊂ [Mε(Xn,Γn) ≤M ] .
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Hence,

P(x0,γ0) (Mε(Xn,Γn) > M)

≤ P(x0,γ0) ((Xn,Γn) ∈ (DK × Y)c)

= P(x0,γ0) (Xn ∈ DcK)

≤
∣∣P(x0,γ0) (Xn ∈ DcK)− π(DcK)

∣∣+ π(DcK) < δ.

Therefore, the containment condition holds.

Corollary 4.2. Suppose that the parameter space Y is a metric space, and the adaptive scheme Γn

is bounded in probability. Suppose that there exists an increasing sequence of sets (Dk,Yk) ↑ X ×Y

such that any k > 0,

lim
n→∞

sup
Dk×Yk

∥∥Pnγ (x, ·)− π(·)
∥∥ = 0.

If the adaptive MCMC algorithm is ergodic then the containment condition holds.

Proof: Using the same technique in Theorem 4.1, for large enough M > 0,

P(x0,γ0) (Mε(Xn,Γn) > M)

≤ P(x0,γ0) ((Xn,Γn) ∈ (Dk × Yk)c)

≤ P(x0,γ0) (Xn ∈ Dc
k) + P(x0,γ0) (Γn ∈ Yck)

≤
∣∣P(x0,γ0) (Xn ∈ DcK)− π(DcK)

∣∣+ π(DcK) + P(x0,γ0) (Γn ∈ Yck) .

Since Γn is bounded in probability, the result holds.

Here, we use one example to explain the importance of the additional conditions in Theorem 4.1

and Corollary 4.2. This example is from Theorem 5.2 in [15].

Example 4.3. The target distribution is Unif(0, 1). The Metropolis proposal is Qk(x, ·) ∼ Unif(x−
k
2 , x+k

2 ). The adaptation is that Γn = k1
(∑k−1

j=1 rj ≤ n <
∑k

j=1 rj

)
where rj = infm

{∥∥∥Pmj (x, ·)− π(·)
∥∥∥ ≤ 1

j

}
.

In Theorem 5.2 of [15], the algorithm is proved to be ergodic and the containment condition

does not satisfy. Another required to be concerned is that Γn is not bounded in probability, because

Γn →∞ a.s. Moreover, for any subset D of (0, 1), thel equation (4) does not satisfy.
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5 Simultaneous Polynomial Ergodicity

Although the ergodicity of adaptive MCMC algorithms, to some degree, is solved in [16] and [3],

there are still some properties unknown about simultaneous polynomial ergodicity. In the section,

we find that the conditions (Y4) and (M3) are implied for the adaptive MCMC with simultaneous

polynomial ergodicity. Before studying it, let us recall the result about a quantitative bound for

time-homogeneous Markov chain with polynomial convergence rate by Fort and Moulines [7] (FM).

Theorem 5.1 (Fort and Moulines [7]). Suppose that the time-homogeneous transition kernel P

satisfies the following conditions:

• P is π-irreducible for an invariant probability measure π;

• There exist some sets C ∈ B(X ) and D ∈ B(X ), C ⊂ D, π(C) > 0 and an integer m ≥ 1,

such that for any (x, x′) ∈ 4 := C ×D ∪D × C, A ∈ B(X ),

Pm(x,A) ∧ Pm(x′, A) ≥ ρx,x′(A) (5)

where for some kernel ρx,x′(dy) from 4 to X , and ε− := inf(x,x′)∈4 ρx,x′(X ) > 0.

• Let q ≥ 1. There exist some measurable functions Vk : X → R+\ {0} for k ∈ {0, 1, . . . , q},

and for k ∈ {0, 1, . . . , q − 1}, for some constants 0 < ak < 1, bk <∞, and ck > 0 such that

PVk+1(x) ≤ Vk+1(x)− Vk(x) + bk1C(x), inf
x∈X

Vk(x) ≥ ck > 0,

Vk(x)− bk ≥ akVk(x), x ∈ Dc, (6)

sup
D
Vq <∞.

• π(V β
q ) <∞ for some β ∈ (0, 1].

Then, for any x ∈ X , n ≥ m,

‖Pn(x, ·)− π(·)‖ ≤ min
1≤l≤q

B
(β)
l (x, n), (7)

with

B
(β)
l (x, n) =

ε+
〈

(I −A(β)
m )−1δx ⊗ π(W β), el

〉
S(l, n+ 1−m)β +

∑
j≥n+1−m(1− ε+)j−(n−m)(S(l, j + 1)β − S(l, j)β)

,

where < ·, · > denotes the inner product in Rq+1, {el}, 0 ≤ l ≤ q is the canonical basis on Rq+1, I

is the identity matrix;

δx ⊗ π(W β) :=
∫
δx(dy)π(dy′)W β(y, y′)
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where W β(x, x′) :=
(
W β

0 (x, x′), · · · ,W β
q (x, x′)

)T
with W0(x, x′) := 1 and

Wl(x, x′) = 14(x, x′) + 14c(x, x′)

(
l−1∏
k=0

ak

)−1

(m(V0))−1 (Vl(x) + Vl(x′)) for 1 ≤ l ≤ q

where m(V0) := inf(x,x′)∈4c {V0(x) + V0(x′)};

S(0, k) := 1 and S(i, k) :=
k∑
j=1

S(i− 1, j), i ≥ 1;

A(β)
m :=



A
(β)
m (0) 0 · · · 0 0

A
(β)
m (1) A

(β)
m (0) · · · 0 0

...
...

. . .
...

...

A
(β)
m (q − 1) A

(β)
m (q − 2) · · · A

(β)
m (0) 0

A
(β)
m (q) A

(β)
m (q − 1) · · · A

(β)
m (1) A

(β)
m (0)


,

where A(β)
m (l) := sup(x,x′)∈4

∑l
i=0 S(i,m)β

(
1− ρx,x′(X )

) ∫
Rx,x′(x, dy)Rx,x′(x′, dy′)W

β
l−i(y, y

′), where

the residual kernel

Rx,x′(u, dy) :=
(
1− ρx,x′(X )

)−1 (
Pmγ (u, dy)− ρx,x′(dy)

)
;

and ε+ := sup(x,x′)∈4 ρx,x′(X ).

Remark 5.1. In the B(β)
l (x, n), ε+ depends on the set 4 and the measure ρx,x′ ; the matrix (I −

A
(β)
m )−1 depends on the set 4, the transition kernel P , ρx,x′ and the test functions Vk; δx ⊗ π(W β)

depends on the set 4 and the test functions Vk.

Consider the special case of the theorem: ρx,x′(dy) = δν(dy) where ν is a probability measure with

ν(C) > 0, and 4 := C × C.

1. ε+ = ε− = (1− δ).

2. I − A(β)
m is a lower triangle matrix so (I − A(β)

m )−1 =
(
b
(β)
ij

)
i,j=1,...,q+1

is also a lower triangle

matrix, and fixing k ≥ 0 all b(β)
i,i−k are equal. b

(β)
ii = 1

1−A(β)
m (0)

. For i > j, b(β)
ij is the polynomial

combination of A(β)
m (0), · · · , A(β)

m (i+ 1) divided by (1−A(β)
m (0))i. By some algebras, we can obtain

that b(β)
21 = A

(β)
m (1)

(1−A(β)
m (0))2

. So, by calculating B
(β)
1 (x, n), we can get the quantitative bound with a

simple form. B(β)
1 (x, n) only involves two test functions V0(x) and V1(x).

Remark 5.2. From Equation (6), V0(x) ≥ b0/(1− α0) > b0 because 0 < α0 < 1. Consider the drift

condition: PV1 − V1 ≤ −V0 + b01C . Since πP = π, π(V0) ≤ b0π(C) ≤ b0. Hence, the V0 in the

theorem can not be constant.
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Remark 5.3. Without the condition π(V β) <∞, the bound in Equation (7) can also be obtained.

However, the bound is possibly infinity. The subscript l of B(β)
l (x, n) and β can explain the poly-

nomial rate. The related rate is S(l, n + 1 − m)β = O((n + 1 − m)lβ). It can be observed that

B
(β)
l (x, n) involves test functions V0(x), · · · , Vl(x), and lim supn nβlB

(β)
l (x, n) < ∞. The maximal

rate of convergence is equal to qβ.

5.1 Conditions

The following conditions derive from Theorem 5.1, and some changes are added to apply for

adaptive MCMC algorithms. Define the adaptive MCMC algorithm {Xn} is simultaneously poly-

nomially ergodic (S.P.E.) if the conditions (A1)-(A4) are satisfied.

A1: each Pγ is φγ-irreducible with stationary distribution π(·);

Remark 5.4. From MT Proposition 10.1.2, if Pγ is ϕ-irreducible, then Pγ is π-irreducible and the

invariant measure π is a maximal irreducibility measure.

Remark 5.5. By Theorem 5.2.2 in Meyn and Tweedie [11] (MT), if P is ψ-irreducible (ψ is a

maximal irreducibility measure), then for any set A ∈ F with ψ(A) > 0, there exists a ν-small set

C ⊂ A Pm(x, ·) ≥ δ1C(x)ν(·), where δ > 0 and ν is a probability measure with ν(C) > 0.

A2: there is a set C ⊂ X , some integer m ∈ N, some constant δ > 0, and some probability measure

νγ(·) on X such that:

π(C) > 0, and Pmγ (x, ·) ≥ δ1C(x)νγ(·) for γ ∈ Y; (8)

Remark 5.6. In Theorem 5.1, there is one condition (Equation (5)) ensuring the splitting technique.

Here we consider the special case of that condition: ρx,x′(dy) = δνγ(dy) and 4 = C × C. Thus,

by Remark 5.1, the bound of
∥∥Pnγ (x, ·)− π(·)

∥∥ depends on C, m, the minorization constant δ, π(·),

νγ , and test functions Vl(x) so we assume that they are uniform on all the transition kernels.

A3: there is q ∈ N and measurable functions: V0, V1, . . . , Vq : X → (0,∞) where 1 ≤ V0 ≤ V1 ≤

· · · ≤ Vq, such that for k = 0, 1, . . . , q − 1, there are 0 < αk < 1, bk < ∞, and ck > 0 such

that:

PγVk+1(x) ≤ Vk+1(x)− Vk(x) + bk1C(x), Vk(x) ≥ ck for x ∈ X and γ ∈ Y; (9)

Vk(x)− bk ≥ αkVk(x) for x ∈ X/C; (10)

sup
x∈C

Vq(x) <∞. (11)
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Remark 5.7. Obviously, each Pγ is νγ-irreducible. νγ(Vl) ≤ 1C(x)1
δP

m
γ Vl(x) ≤ 1

δ supx∈C Vl(x) +
mbl−1

δ .

A4: π(V β
q ) <∞ for some β ∈ (0, 1].

5.2 Main Result

Although the ergodic property of adaptive MCMC algorithms with Markovian adaptation has

been basically resolved in [3], there still are some parts unknown about the general adaptive MCMC

algorithms. Here, we discuss the properties of adaptive MCMC algorithms with S.P.E..

Lemma 5.2. Suppose that the family {Pγ}γ∈Y is S.P.E.. If for any l ∈ {1, . . . , q}, the stochastic

process Vl(Xn) is bounded in probability, then the containment condition is satisfied.

The proof is in Section 5.4.

Remark 5.8. By Lemma 5.2, the condition (M3) is satisfied provided that (A1)-(A4). Therefore,

any adaptive MCMC algorithm with Markovian adaptation and diminishing adaptation satisfying

S.P.E. is ergodic by Theorem 3.4.

Remark 5.9. In Lemma 5.2, (A4) will be used to show that the uniform quantitative bound of∥∥Pnγ (x, ·)− π(·)
∥∥ is finite.

Theorem 5.3. Suppose the an adaptive MCMC algorithm satisfies the diminishing adaptation.

Then, the algorithm is ergodic under either of the following cases:

(i) S.P.E., and the number q of simultaneous drift conditions is strictly greater than two;

(ii) S.P.E., and when the number of simultaneous drift conditions is greater than or equal to two,

there exists an increasing function f : R+ → R+ such that V1(·) ≤ f(V0(·));

(iii) (A1), (A2), (A4), and the simultaneous drift condition has the form

PγV (x)− V (x) ≤ −cV α(x) + b1C(x) (12)

where cV α(x) ≥ b on Cc, for any α ∈ (0, 1);

(iv) (A1), (A2), (A4), and when the simultaneous drift condition has the form

PγV1(x)− V1(x) ≤ −V0(x) + b1C(x) (13)

where V0(x) ≥ b on Cc, and the process {V1(Xn)} is bounded in probability.

The theorem consists of Theorem 5.7, Theorem 5.8, Theorem 5.10, and Lemma 5.2.
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Remark 5.10. In the theorem, the containment condition is directly implied by S.P.E..

Remark 5.11. Polynomial ergodicity means that for some rate function r(n), limn→∞ r(n)
∥∥Pnγ (x, ·)− π(·)

∥∥ =

0. Indeed, the above theorem presents that if all the transition kernels converge in polynomial rate

r(n) = O(np) for p > 0.

1. In the case (i), p > 1. In the case (ii), p ≥ 1.

2. In the case (iii), the polynomial rate depends on the value α, and p = 1/(1−α)− 1. Jarner and

Roberts [10] (JR) prove that for α ≥ 1/2, this kind of drift condition can imply the nested drift

conditions, and the number of drift conditions is equal to [ 1
1−α ] where [x] is the maximal integer

not exceeding x. Eg. if α ≥ 2
3 , then part (iii) implies part (i); if α ≥ 1

2 , and assume that V0 and V1

has the relation described in part (ii), then part (iii) implies part (ii).

5.3 Examples

In the following example (Example 3.1 in [5]), we show that under some situations, the simul-

taneous drift conditions (Y2), (M2) and (A3) do not hold.

Consider the Metropolis-Hastings algorithm on the state space X = (0,+∞), and the adaptive

parameter space Y = {−1, 1}. The target density π(x) ∝ 1(x>0)
1+x2 . Let {Zn}n be i.i.d. standard

normal. the proposal values are given

Y Γn−1
n = X

Γn−1

n−1 + Zn.

i.e. if Γn−1 = 1 then Yn = Xn−1 + Zn, while if Γn−1 = −1 then Yn = 1
1/Xn−1+Zn

. The adaptation

is defined by

Γn = −Γn−11(XΓn−1
n < 1/n) + Γn−11(XΓn−1

n ≥ 1/n),

i.e. we change Γ from 1 to −1 when X < 1/n, and change Γ from −1 to 1 when X > n. otherwise

we do not change Γ.

By some algebras, we have that if Γn−1 = 1,

PΓn−1(x,A) =
∫ ∞

0
1A(y)

(
1 + x2

1 + y2
∧ 1
)
φ(y − x)dy +

δx(A)
∫ ∞

0

[
1− 1 + x2

1 + y2
∧ 1
]
φ(y − x)dy;

if Γn−1 = −1,

PΓn−1(x,A) =
∫ ∞

0
1A(y)

(
1 + x−2

1 + y−2
∧ 1
)
φ(y−1 − x−1)/y2dy +

δx(A)
∫ ∞

0

[
1− 1 + x−2

1 + y−2
∧ 1
]
φ(y−1 − x−1)/y2dy,

12



where φ(x) = (2π)−1/2e−x
2/2.

Obviously, Pγ is π-irreducible and aperiodic. By Theorem 2.2 of Roberts and Tweedie [14],

P1(x, ·) ≥ ελ(·) for x in any compact set on R+, where λ is Lebegue measure. Although for

P−1, the conditions of that theorem are not satisfied, the minorization condition is still satisfied,

because ∫ ∞
0

1A(y)
(

1 + x−2

1 + y−2
∧ 1
)
φ(y−1 − x−1)/y2dy

=
∫ ∞

0
1A(y)

(
(1 + x−2) ∧ (1 + y−2)

) φ(y−1 − x−1)
1 + y2

dy

≥
∫ ∞

0
1A(y)

φ(y−1 − x−1)
1 + y2

dy ≥ εµ(A),

where µ(·) is probability measure by normalizing φ(y−1−x−1)
1+y2

, which is absolutely continuous w.r.t.

λ. So, Equation (8) is satisfied. The algorithm is not ergodic to the stationary measure π(·) (See

details in [5]). Hence, S.P.E. is not satisfied.

5.4 Proof of Theorem 5.3

Proof of Lemma 5.2: We use the notation in Theorem 5.1.

Since {Pγ}γ∈Y is S.P.E., we know that for each γ ∈ Y,
∥∥Pnγ (x, ·)− π(·)

∥∥ ≤ B(β)
1 (x, n).

By the definition of ε+ and ε−, ε+ = ε− = δ.

From Remark 5.1, ρx,x′(dy) = δνγ(dy) so that ρx,x′(X ) = δ. Since the matrix I − A(β)
m is a lower

triangle matrix, so is (I −A(β)
m )−1 := (b(β)

ij )i,j=0,··· ,q. By the definition of B(β)
l (x, n),

B
(β)
l (x, n) =

ε+
∑l

k=0 b
(β)
lk

∫
π(dy)W β

k (x, y)
S(l, n+ 1−m)β +

∑
j≥n+1−m(1− ε+)j−(n−m)(S(l, j + 1)β − S(l, j)β)

≤ ε+

S(l, n+ 1−m)β

l∑
k=0

b
(β)
lk

∫
π(dy)W β

k (x, y).

Consider the term:∫
π(dy)W β

k (x, y)

= 1C(x)π(C) + 1C(x)
∫
Cc
π(dy)

(
m(V0)

l−1∏
k=0

ak

)−β
(Vk(x) + Vk(y))β +

1Cc(x)
∫
π(dy)

(
m(V0)

l−1∏
i=0

ai

)−β
(Vk(x) + Vk(y))β

≤ π(C) +

(
m(V0)

l−1∏
i=0

ai

)−β [
V β
k (x) + π(V β

k )
]
,

13



because
(
xβ
)′
≤ 1 for x ≥ 1 and β ∈ (0, 1] is concave so (x + 1)β − xβ ≤ 1 for x ≥ 1, then

(V0(x) + V0(x′))β ≤ V β
0 (x) + V β

0 (x′).

By the definition of m(V0), m(V0) ≥ 2.

By induction, we obtain that b(β)
10 = A

(β)
m (1)

(1−A(β)
m (0))2

, and b
(β)
11 = 1

1−A(β)
m (0)

.

Since 0 < Wk(x, y) ≤ 1, A(β)
m (0) ≤ 1− ε− = 1− δ so that 1

1−A(β)
m (0)

≤ 1
δ .

Consider the term

A(β)
m (1)

≤ mβA(β)
m (0) + sup

(x,x′)∈4
(1− δ)

∫
Rx,x′(x, dy)Rx,x′(x′, dy′)W

β
1 (y, y′)

≤
(
mβ + 1

)
(1− δ).

Hence,

b
(β)
10 ≤

mβ + 1
1− δ

, and b
(β)
11 ≤

1
1− δ

.

Thus,

B
(β)
1 (x, n)

≤ δ

S(1, n+ 1−m)β

(
b
(β)
10

∫
π(dy)W β

0 (x, dy) + b
(β)
11

∫
π(dy)W β

1 (x, dy)
)

≤ 1
(1− δ)S(1, n+ 1−m)β

(
(mβ + 2)π(C) + 2−β

[
(mβ + 1)(V β

0 + π(V β
0 )) + a−β0 (V β

1 + π(V β
1 ))
])
.

Therefore, the boundedness of the process V1(Xk) implies that the B
(β)
1 (x, n) converges to zero

uniformly on Y. The containment condition holds.

Lemma 5.4 (Dynkin’s Formula for adaptive MCMC). Consider an adaptive MCMC {Xn} with

adaptive scheme {Γn} (satisfying adaptive MCMC property: Equation (1)). f(·) is a fixed Borel

measurable function of Xk. For each (x, γ) ∈ X × Y and n ∈ Z+,

E(x,γ) [f(Xτn)] = E(x,γ) [f(X0)] + E(x,γ)

[
τn∑
i=1

(
EΓi−1 [f(Xi)|Xi−1]− f(Xi−1)

)]
,

where τ be any stopping time for Xn, and τn = τ ∧ n ∧ inf {k ≥ 0 : f(Xk) ≥ n}.

Proof: For each n ∈ Z+,

f(Xτn) = f(X0) +
τn∑
i=1

(f(Xi)− f(Xi−1))

= f(X0) +
n∑
i=1

1(τn ≥ i)(f(Xi)− f(Xi−1)).
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Since τ is a stopping time w.r.t. Xn, {τn ≥ i} ∈ Fi−1. Hence, by Equation (1),

E(x,γ) [f(Xτn)]

= E(x,γ) [f(X0)] + E(x,γ)

[
n∑
i=1

E(x,γ) [f(Xi)− f(Xi−1)|Fi−1] 1(τn ≥ i)

]

= E(x,γ) [f(X0)] + E(x,γ)

[
τn∑
i=1

(
EΓi−1 [f(Xi)|Xi−1]− f(Xi−1)

)]
.

Lemma 5.5 (Comparison Lemma for adaptive MCMC). Consider an adaptive MCMC {Xn} with

adaptive scheme {Γn}. Suppose that the non-negative functions V , f , s satisfying the relationship

PγV (x)− V (x) ≤ −f(x) + s(x), x ∈ X and γ ∈ Y.

Then for each x ∈ X and any stopping time τ of Xn we have

E(x0,γ0)

[
τ−1∑
k=0

f(Xn+k)|Xn,Γn

]
≤ V (x0) + E(x0,γ0)

[
τ−1∑
k=0

s(Xn+k)|Xn,Γn

]
.

Proof: The proof is same as Theorem 14.2.2 in MT [11], and omitted.

The following proposition shows the relations between the moments of the hitting time and the

test function V -modulated moments for adaptive MCMC algorithms with S.P.E., which is derived

from the result for Markov chain in JR [10].

Proposition 5.6. If the family {Pγ}γ∈Y is S.P.E., then

E(x0,γ0)[τkn,C |Xn,Γn]
kcq−k

≤ E(x0,γ0)

[∑τn,C−1
j=0 (j + 1)k−1Vq−k(Xn+j) | Xn,Γn

]
≤ dq−k

(
Vq(Xn) +

∑k
j=1 bq−j1C(Xn)

)
,

(14)

for k = 1, . . . , q, and some constant dq−k.

Proof: Since Vk ≥ ck,
τn,C−1∑
i=0

(i+ 1)k−1 ≥
∫ τn,C

0
xk−1dx = k−1τkn,C .

So, the first inequality holds.

By Lemmas 5.4 and 5.5 and S.P.E., we obtain

E(x0,γ0)

[
Vk(Xτn,C ) | Xn,Γn

]
≤ Vk(Xn)− E(x0,γ0)

[∑τn,C−1
i=0 Vk−1(Xn+i) | Xn,Γn

]
+ bk−11C(Xn).

(15)
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Hence,
E(x0,γ0) [τn,C | Xn,Γn] /ck−1 ≤ E(x0,γ0)

[∑τn,C−1
i=0 Vk−1(Xn+i) | Xn,Γn

]
≤ Vk(Xn) + bk−11C(Xn).

(16)

From Equation (16) and Vk(x) ≥ ck > 0, we have that

sup
x∈C

E(x0,γ0)

τn,C−1∑
i=0

Vk−1(Xn+i) | Xn = x

 < ∞, (17)

sup
x∈C

E(x0,γ0) [τn,C | Xn = x] ≤
(

sup
x∈C

Vk(x) + bk−1

)
/ck−1 <∞. (18)

Since Equation (18), supx∈C
∑∞

i=0 P(x0,γ0) (τn,C > i | Xn = x) <∞.

So, supx∈C P(x0,γ0) (τn,C > i | Xn = x) = o
(
i−1
)
. Hence,

sup
x∈C

P(x0,γ0) (τn,C <∞ | Xn = x) = 1. (19)

Using induction and the technique in [10], the results hold.

Theorem 5.7. Suppose that the family {Pγ}γ∈Y is S.P.E. for q > 2. Then, the containment

condition holds.

Proof: For k = 1, . . . , q, take large enough M > 0 such that C ⊂ {x : Vq−k(x) ≤M},

P(x0,γ0) (Vq−k(Xn) > M)

=
n∑
i=0

P(x0,γ0) (Vq−k(Xn) > M, τi,C > n− i,Xi ∈ C) +

P(x0,γ0) (Vq−k(Xn) > M, τ0,C > n,X0 /∈ C) .

By Proposition 5.6, for i = 0, · · · , n,

P(x0,γ0) (Vq−k(Xn) > M, τi,C > n− i | Xi ∈ C)

≤ P(x0,γ0)

τi,C−1∑
j=0

(j + 1)k−1Vq−k(Xi+j) > (n− i)k−1M + cq−k

n−i−1∑
j=0

(j + 1)k−1, τi,C > n− i | Xi ∈ C


≤ P(x0,γ0)

τi,C−1∑
j=0

(j + 1)k−1Vq−k(Xi+j) > (n− i)k−1M + cq−k

n−i−1∑
j=0

(j + 1)k−1 | Xi ∈ C


≤

supx∈C E(x0,γ0)

[
E(x0,γ0)

[∑τi,C−1
j=0 (j + 1)k−1Vq−k(Xi+j) | Xi,Γi

]
| Xi = x

]
(n− i)k−1M + cq−k

∑n−i−1
j=0 (j + 1)k−1

P(x0,γ0)(Xi ∈ C)

≤
dq−k

(
supx∈C Vq(x) +

∑k
j=1 bq−j1C(x)

)
(n− i)k−1M + cq−k

∑n−i−1
j=0 (j + 1)k−1

P(x0,γ0)(Xi ∈ C),
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and

P(x0,γ0) (Vq−k(Xn) > M, τ0,C > n | X0 /∈ C)

≤
dq−k

(
Vq(x0) +

∑k
j=1 bq−j1C(x0)

)
nk−1M + cq−k

∑n−1
j=0 (j + 1)k−1

P(x0,γ0)(X0 /∈ C).

By simple algebra,

(n− i)k−1M + cq−k

n−i−1∑
j=0

(j + 1)k−1 = O
(

(n− i)k−1 (M + cq−k(n− i))
)
.

Therefore,

P(x0,γ0) (Vq−k(Xn) > M)

≤ dq−k

(
supx∈C∪{x0} Vq(x) +

∑k
j=1 bq−j

)
·
(∑n

i=0
[P(x0,γ0)(Xi∈C)]2

(n−i)k−1(M+cq−k(n−i)) + δCc (x0)

nk−1(M+cq−kn)

)
.

(20)

Whenever q > 2, k can be equal to 2. The summation of L.H.S. of Equation (20) is finite given

M . Hence, taking large enough M > 0, the probability will be small enough. So, the sequence

{Vq−2(Xn)}n is bounded in probability. By Lemma 5.2, the containment condition holds.

Remark 5.12. In the proof, the parameter β (A4) is not used.

Remark 5.13. When q = 2, from the proof of Theorem 5.7, the sequence {V0(Xn)}n is bounded in

probability which is not helpful to uniformly bound the distance
∥∥Pnγ (x, ·)− π(·)

∥∥. However, if V0(·)

is a nice function (non-decreasing) of V1(·), then the sequence {V1(Xn)}n is bounded in probability.

In Theorem 5.10, we discuss this situation for simultaneously single polynomial drift condition.

Theorem 5.8. Suppose that {Pγ}γ∈Y is S.P.E. for q = 2. Suppose that there exists a strictly

increasing function f : R+ → R+ such that V1(x) ≤ f(V0(x)) for all x ∈ X . Then, the containment

condition is implied.

Proof: From Equation (20), we have that {V0(Xn)}n is bounded in probability. Since V1(x) ≤

f(V0(x)),

P(x0,γ0) (V1(Xn) > f(M)) ≤ P(x0,γ0) (f(V0(Xn)) > f(M)) = P(x0,γ0) (V0(Xn) > M) ,

because f(·) is strictly increasing. By the boundedness of V0(Xn), for any ε > 0, there exists N > 0

and some M > 0 such that for n > N , P(x0,γ0) (V1(Xn) > f(M)) ≤ ε. Therefore, {V1(Xn)}n is

bounded in probability. By Lemma 5.2, the containment condition is satisfied.
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Consider the single polynomial drift condition, see [10]: PγV (x)−V (x) ≤ −cV α(x) + b1C(x) where

0 ≤ α < 1. Because the moments of the hitting time to the set C is (see details in [10]), for any

1 ≤ ξ ≤ 1/(1− α),

Ex

[
τC−1∑
i=0

(i+ 1)ξ−1V (Xi)

]
< V (x) + b1C(x).

The polynomial rate function r(n) = nξ−1. If α = 0, then r(n) is a constant. Under this situation,

it is difficult to utilize the technique in Theorem 5.7 to prove V (Xn) is bounded in probability.

Thus, we assume α ∈ (0, 1).

Proposition 5.9. Suppose the family {Pγ}γ∈Y is S.P.E. with only one simultaneous drift condition,

and it has the form

(PγV )(x)− V (x) ≤ −cV α(x) + b1C(x), (21)

for any α ∈ (0, 1), then

E(x0,γ0)

τn,C−1∑
i=0

(i+ 1)ξ−1V 1−ξ(1−α)(Xn+i) | Xn,Γn

 ≤ cξ(C)(V (Xn) + 1). (22)

Proof: The proof applies the techniques in Lemma 3.5 and Theorem 3.6 of [10]. From their results,

Equation (21) can be transformed into a group of polynomial drift conditions with the same forms

in the definition of S.P.E..

Theorem 5.10. Suppose the conditions in Proposition 5.9 are satisfied. Then, the containment

condition is implied.

Proof: Using the same techniques in Theorem 5.7, we have that

P(x0,γ0)

(
V 1−ξ(1−α)(Xn) > M

)
≤ cξ

(
supx∈C∪{x0} V (x) + 1

)
·
(∑n

i=0
[P(x0,γ0)(Xi∈C)]2
(n−i)ξ−1(M+n−i) + δCc (x0)

nξ−1(M+n)

)
. (23)

Therefore, for any α ∈ (0, 1), for any ξ ∈ (1, 1/(1−α)), the sequence
{
V 1−ξ(1−α)(Xn)

}
n

is bounded

in probability. Since 1−ξ(1−α) > 0, the process {V (Xn)} is bounded in probability. By Lemma 5.2,

the containment condition holds.
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