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Since the beginning of the Covid-19 pandemic, public health authorities
across the globe have implemented policies, such as lockdowns, in an attempt
to reduce population mobility, and consequently, person-to-person contacts.
It is well known that lockdowns reduce mobility, but to what extent does this
reduction in mobility lead to lower infection rates? In this paper, we extend
the endemic-epidemic modeling framework in a principled manner, incorpo-
rating temporally changing mobility network data and quantifying the risk
associated with travelling throughout the first year of the pandemic in two
Spanish Communities.

1. Introduction. The relationship between mobility and Covid-19 is of utmost impor-
tance, as mobility-reducing policies such as lockdowns and travel restrictions are often used
to thwart the spread of such infectious diseases. Countless studies have attempted to quan-
tify the effectiveness of mobility reductions by using a variety of data sources and statistical
methods. Cellphone-derived mobility data is well-suited for this purpose, as we can use it to
quantify the severity of a lockdown as well as relate it to case counts via a statistical model
such as a generalized linear model or infectious disease model. Slater et al. (2021) showed
that mobility data better captures spatial heterogeneity in Covid-19 case counts than spa-
tial proximity in Bayesian spatial models. Furthermore, cellphone-derived mobility data can
capture changes in the temporal dimension, a limitation in existing mobility models for infec-
tious disease surveillance data (Meyer and Held, 2014). However, the temporal relationship
between mobility and case counts poses great modeling challenges, as the correlation be-
tween the two changes in each wave, with high correlation in the first wave, and little/negative
correlation in subsequent waves (Gottumukkala et al., 2021). We argue that since mobility
affects the reproduction rate of infectious diseases (as opposed to the absolute counts), we
can indeed infer the impact of mobility on case counts using a spatio-temporal infectious
disease model.

In the last two decades, a class of infectious disease models known as endemic - epidemic
models have gained popularity due to their simplicity and forecasting ability (Held, Höhle
and Hofmann, 2005). A simple version of these models can be written as:

Yt|Yt−1 ∼ Pois(λt)

λt = ω+ αYt−1

where Yt is the number of cases at time t, ω is the “endemic” component which describes
new cases that are not explained by previous cases, and αYt−1 is the “epidemic component”
which describes new cases that are directly attributable to previous cases. These models have
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since been extended to include temporally changing α (Held et al., 2006), multiple diseases
(Paul, Held and Toschke, 2008), random effects (Paul and Held, 2011), seasonal effects (Held
and Paul, 2012), serial interval distributions of disease (Bracher and Held, 2020) and more.
Endemic-epidemic models overcome the computational difficulties of fitting classic compart-
mental (SIR) models, and are an attractive alternative when an abundance of data is available
(Wakefield, Dong and Minin, 2019).

An example of a multivariate, or in the context of this paper, multi-region endemic-
epidemic model is

Yit|Y t−1 ∼ Pois(λit)

λit = ωit + α
∑
j

vjiYj,t−1(1)

where Yit is the number of cases in region i at time t, i and j are region indicators, and vji’s
represent (potentially asymmetric) weights between regions j and i. Typically these weights
are row-normalized (sum to 1) but this is not necessary. Some common weights are functions
of physical distance or proximity such as those suggested in Paul, Held and Toschke (2008)

vji =
1

Ne(j)

or those suggested in Meyer and Held (2014)

vji = (oji + 1)−ρ

where Ne(j) is the number of regions sharing a border (neighbors) with region j, oji is the
minimum number of region borders you would have to cross to get from region j to i, and ρ
is a parameter to be estimated . These weights tend to work well because they are good proxy
for the number of people moving between regions, and resultingly, contact rates between in-
fectious and susceptible people. More interestingly, these weights have been combined with
or replaced by other data sources to more accurately estimate the contact rates between in-
dividuals of different regions. For instance, Schrödle, Held and Rue (2012) used assymetric
mobility weights to model the spread of Coxiellosis in Swiss cows. Geilhufe et al. (2014)
used mobility data to estimate the relationship between distance and mobility, and define
their weights based on this relationship. Meyer and Held (2017) estimate contact rates be-
tween age groups using external data and combine these data with spatial proximity weights
and used this as an estimate for contact rates between age groups across various regions.
Fritz and Kauermann (2022) build weights based on estimated social connectedness via so-
cial media data. Grimée et al. (2022) created temporally changing weights by combining
border closure, proximity, and mobility data to assess the effectiveness of lockdowns dur-
ing the Covid-19 pandemic, and estimate case counts under counterfactual scenarios. Celani
and Giudici (2022) incorporated mobility weights to assess the effectiveness of containment
measures in Italy. Each of these works show that proximity weights can be supplemented or
replaced with external data to improve forecasting or inference.

Much of the methodological progress surrounding endemic-epidemic models aims to im-
prove forecasting ability based on the framework presented in Gneiting and Raftery (2007).
Consequently, the applications of these models tend to lack interpretability. When the goal is
learning about the biological properties of an infectious disease, we must make every effort to
ensure our model parameters have clear meanings, and that our results are biologically plau-
sible. Covariates introduced should be done so carefully, and should effect model parameters
in a way that are consistent with infectious disease dynamics.

In this paper, we derive a mobility extended spatio-temporal endemic-epidemic model
where contact rates are a temporally changing function of mobility. In doing so, we ensure
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interpretability of our important parameters, and carefully specify the functional form of
the reproduction number via data exploration methods. We use this model to infer the risk
associated with travelling during the first 12-15 months of the Covid-19 pandemic in two
Spanish Autonomous Communities using high resolution areal mobility networks derived
from cellphone GPS signals.

This paper is structured as follows. We introduce the data that motivated this work in
Section 2, and present our model and methods in Section 3. In Section 4, we apply our model
to two Spanish Communities, inferring the risk associated with travelling in both. We end
with a discussion of our model results, limitations, and future work.

2. Data. This paper focusses on Madrid and Castilla-Leon, two Communities in Spain.
Madrid, with a population of approximately 6.8 million, is home to Madrid City, the capital
of Spain. Castilla-Leon is geographically the largest Community in Spain, with a population
of 2.5 million, and is thus much more rural than the Community of Madrid. Each community
is divided into smaller subregions (Madrid has 179 subregions, Castilla-Leon has 245), which
are depicted in Figure 4. We obtain weekly mobility network data for the trips between and
within each of these subregions, alongside Covid-19 cases. The mobility data used in this
paper is a temporal extension of that used in Slater et al. (2021), where it was shown that static
mobility networks improved the fit of classic spatial models for Covid-19 in two Spanish
communities. These data can be downloaded from Ministerio de Transportes Movilidad Y
Agends Urbana, Gobierno de España (2022), and are described in detail in Ponce-de Leon
et al. (2021). Although daily mobility data is available, we aggregated it by week to match
the resolution of the case data, avoiding the well-known day-of-the-week effect of Covid-19
case reporting (Slater, Brown and Rosenthal, 2021).

For Castilla-Leon, the weekly case data from March 1, 2020, to March 7, 2021 was ob-
tained from the open data portal of Castilla-Leon (General Directorate of Information Sys-
tems, Quality and Pharmaceutical Provision, 2022). For Madrid, case data from March 1,
2020, to May 9, 2021 was obtained from Epidemiological Surveillance Network of Madrid
(Epidemiological Surveillance Network of Madrid, 2022). For both Communities, cases were
identified using PCR tests up until October 7, 2020, after which antigen tests were also uti-
lized. Note that nearing the end of our Madrid case data, vaccines were being administered
to the public, and thus should be accounted for. Country level vaccine data was obtained
from Ministerio de Sanidad, Gobierno De España (2022a), where by the end of our study pe-
riod, 28.7% of the population had received at least one dose (Pfizer, Moderna, AstraZeneca,
Janssen), while 11.5% were fully vaccinated (received two doses). Although we don’t ex-
pect this to have a substantial impact on our results, the effect of vaccines should at least be
explored.

Daily testing data was acquired from the Government of Spain Ministry of Health website
(Ministerio de Sanidad, Gobierno De España, 2022b). Testing data was only available at the
community level, which we aggregated by week.

Aggregated mobility, case count, and testing data are shown in Figure 1. Mean daily mo-
bility for the study period is depicted in Figure 2.

3. Methodology. In this section, we start by introducing a single-region version of a
mobility-extended endemic-epidemic model, a derivation inspired by Bauer and Wakefield
(2018). We then extend this model to a multi-region model, and describe reasonable assump-
tions that make implementing this model computationally feasible. We then describe the
careful processes of accounting for delayed reporting, serial intervals, and underreporting,
while retaining interpretability of our model. We conclude the section with an explanation of
the summary statistics used in this paper, followed by our inference methodology.
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3.1. Single region model. In epidemiology, the force of infection at time t, λt, is defined
as the rate at which susceptible individuals become infected. Mathematically, we write it as
(Halloran, Longini and Struchiner, 2010)

λt = Ct−1 ×Pt−1 ×
It−1
N

where Ct−1 is the rate of contacts between an infectious person and susceptibles individuals
at time t− 1, Pt−1 is the probability of infection given a contact between an infectious and
susceptible individual, It−1 is the number of infectious individuals at time t − 1, meaning
that It−1

N is the prevalence at time t− 1 (where N is the population). For simplicity, we will
assume It−1 = Yt−1, that the number of infectious individuals equals the number of cases,
but will later relax this assumption. Typically, the number of contacts is assumed to be con-
stant (frequency dependent) or proportional to the population size N (density dependent).
Distinguishing between these is inconsequential in our models as we will see later on. How-
ever, in this paper, we assume Ct is a function of mobility, w, which is the number of trips as
described in Section 2. That is, we assume that the contacts function takes the form

Ct−1 = c0 +

D∑
d=1

cdwt−d

where the c0, ..., cD are unknown constants and D is some small integer (i.e 1,2 or 3) chosen
by the analyst. If we assume a serial interval of one week (relaxed in later sections), the
cases this week, Yt, were caused by cases in the previous week, Yt−1. However, the reason
for including higher lags of mobility is because it is possible that a case that appeared in the
quantity Yt should have appeared in Yt−1 due to a case at Yt−2, but was delayed because they
didn’t immediately produce a positive test. We can’t differentiate between a reporting delay
and a longer serial interval so we hope that inclusion of Yt−2 in our model will account for
both. Mobility data included in this way has been shown to improve forecasting ability of
univariate endemic-epidemic models (Douwes-Schultz et al., 2022). If we assume that the
per-contact probability of infection is time constant Pt−1 = p (an assumption that could be
relaxed based on available data), then our force of infection is

λt =
(
c0 +

D∑
d=1

cdwt−d
)
× p× Yt−1

N

= c0p
Yt−1
N

+
( D∑
d=1

cdp ·wt−d
)Yt−1
N

= αAR
Yt−1
N

+
( D∑
d=1

αmob
d wt−d

)Yt−1
N

where αAR = c0p and αmob
d = cdp are parameters representing the “autoregressive” and “mo-

bility” components of the model, and will be estimated from data. Note that we are estimating
the product α= pc, so assuming time constant p and c leads to time constant α’s. Given that
the first major variants didn’t start to appear until early 2021 (Alpha/Beta/Gamma, and later
Omnicron), a time constant p seems reasonable, as disease characteristics likely didn’t change
much in this time period. If this model were extended well into 2021, we could allow the α’s
to change as variants are introduced. If we make the additional assumption that infected peo-
ple are equally likely to move as the rest of the population, then αmob

d can be interpreted as the
number of infections at time t per infected trip at time t− d, and αAR is the number of new
infections at time t per infection at time t− 1, but not related to mobility. This assumption
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may not be as problematic as it may sound, as people can be infectious several days prior to
showing any symptoms (He et al., 2020), and thus likely not to change their behavior in this
time.

Bauer and Wakefield (2018) show that when the number of susceptibles ≈N , the number
of infections at time t is approximately Poisson distributed

Yt|Yt−1 ∼ Pois(λt).

Furthermore, it is common, and mathematically convenient, to assume that there is some
number infections, αEX, that come from outside the region, not related to the previous cases
Yt−1. In doing so, we arrive at an extension of the univariate endemic-epidemic model (Held,
Höhle and Hofmann, 2005)

Yt|Yt−1 ∼ Pois(λ†t)

λ†t = αEX + αARYt−1 +
( D∑
d=1

αmob
d wt−d

)
Yt−1(2)

This model can be thought of as a branching process with immigration, with reproduction
number, αAR +

∑D
d=1α

mob
d wt−d, that linearly depends on mobility, and an immigration of

αEX. This implies that mobility only effects the reproduction rate of the disease, and does not
relate directly to the case counts. This is an attractive property of this model, as mobility can
only cause infections in the next generation if infectious people from the previous generation
move around. This is because our model assumes that such movements are directly related
to the number of contacts between susceptible and infectious individuals, where each contact
will lead to an infection with probability p. If the effect of mobility is small, then the repro-
duction number will be almost entirely described by the constant αAR. In other words, αAR

can be thought of as an autoregressive term that relates previous cases to current cases, or it
can be thought of as the intercept in the line relating the reproduction number to mobility.

It should be noted that the models in this paper assume that the reproduction number is
independent of observed cases, given mobility. We justify this decision as follows. There are
two main ways that observed cases may impact the reproduction number. The first way is
through behaviour change, in that people will likely change their behaviour if they hear that
the case count is rising. However, we expect that this behaviour change will (at least some-
what) be captured by changes in mobility. For example, companies encouraging employees
to work from home will likely lower the reproduction number, but this is because it is re-
ducing the number of person-to-person contacts, which should be reflected in a reduction in
mobility. The second way that the observed case counts can impact reproduction numbers is
through heard immunity, in that some fraction of the population will no longer be susceptible
for some period of time. However, during the duration of our study, this fraction is small (0
to 10%) and thus including additional parameters to account for current prevalence in the
reproduction number would likely do very little for improving model fit.
αEX represents an influx of cases caused by infectious people outside our dataset infecting

susceptibles in our region. When regions are large, this number should be relatively small.
Including αEX serves to prevent our branching process from dying out, which will be espe-
cially helpful in the multi-region case when there are small subregions with low amounts of
mobility. In some applications, this component is appropriately referred to as an “endemic”
component, as it may describe predictable yearly fluctations/periodicities in disease inci-
dence. However, even cases that arise in an “endemic” are often still attributable previous
cases, but with a more predictable/periodic pattern, and can be thought of as the “background
rate of disease” (Gordis, 2013). This interpretation is common in endemic-epidemic mod-
els and models that predated them (Knorr-Held and Richardson, 2003). Covid-19 had not
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yet reached endemic status, thus estimating the background rate of infection is challenging.
Thus we believe the term “exogenous” is more appropriate for our application, and should
be viewed as factors influencing the absolute number of cases in a region as opposed to the
infectiousness of the disease.

Note that is is common in the endemic-epidemic literature to use a negative binomial like-
lihood to account for conditional overdispersion. However, this is done purely for practical
reasons, as this distribution does not arise in the derivation from a discrete-time SIR model
(Wakefield, Dong and Minin, 2019). We consider negative binomial models briefly in the
application section of this paper.

An alternative way to view model (2) is using the competing risks framework as in Bauer
and Wakefield (2018). That is, we can view the exogenous, autoregressive, and movement
terms as their own individual Poisson process, and the total force of infection, indicated by
†, is the sum of three Poisson random variables with mean

λ†t = λEX
t + λAR

t + λmob
t .

In other words, a susceptible can be infected in one of three ways, all with some positive
probability. Furthermore, we can compute the proportion of cases attributable to movement
(PCAtM) at time t as λmob

t

λ†t
. We will use this measure and its associated uncertainty to assess

the association between mobility and infection. We will now extend our model to the multi-
region case.

3.2. Multi-region model. Now that we are dealing with more than one geographic region
(245 regions for Castilla-Leon, 179 for Madrid), we must define a region-wise force of in-
fection. The force of infection, λjit is defined as the rate at which infectious individuals in
region j, infect susceptible individuals in region i, at time t. Similar to the univariate case,
we can write this mathematically as

λjit = Cji,t−1pji,t−1
yj,t−1
Nj

= (cji,t−1pji,t−1 +

D∑
d=1

cmob
ji,t−dpji,t−1wji,t−d)

yj,t−1
Nj

= (αjit +

D∑
d=1

αmob
ji,t−dwji,t−d)

yj,t−1
Nj

,

where αjit = cji,t−1pji,t−1 is number of cases in region i attributed to a single case in region j
that is not accounted for by mobility, pjit is the (potentially time-varying) probability that an
infectious individual in region j infects an individual in region i, and wji,t−d is the number
of trips from region j to region i at time t − d. αmob

jit = cmob
jit pjit is the of number cases in

region i caused by an infected trip from region j to i. As is, the number of model parameters
grow at a rate of O(I2 × T ) where I is the number of regions and T is the number of time
points. Given that we will be dealing with hundreds of subregions, we simplify the problem
by making the following assumptions:

• We assume that αjit is temporally constant, and is equal to the sum of an autoregressive
term and a spatial term: αjit = αAR

i + αspat
i

∑
j∼i vji, where vji = 1

|Ne(j)| , with j ∼ i rep-
resenting all the neighbours of i, and |Ne(j)| being the number regions sharing a border
(neighbors) with region j.

• We assume that αmob
jit is temporally constant, and does not depend on the origin j, but only

on the destination i: αmob
ji,t−d = αmob

i,d . Note that not making these assumptions pertaining to
temporal constancy may lead to identifiability issues.
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• For every i, t there are j independent Poisson processes (with mean λjit) competing to
infect susceptibles in region i. Since the sum of Poisson processes is Poisson, we arrive at
λit =

∑
j λjit.

The number of parameters to be estimated is nowO(I), which is much more computationally
feasible. Adding an exogenous component, αEX

i , for each region, leads us to an extension of
the multi-region endemic-epidemic model

Yit|Y t−1 ∼ Pois(λ†it)

λ†it = αEX
i︸︷︷︸
λEX
it

+αAR
i

Yi,t−1
Ni︸ ︷︷ ︸

λAR
it

+αspat
i

∑
j∼i

vji
Yj,t−1
Nj︸ ︷︷ ︸

λspat
it

+

D∑
d=1

αmob
id

∑
j

wji,t−d
Yj,t−1
Nj︸ ︷︷ ︸

λmob
it

(3)

If the αmob
d ’s are found to be close to 0, then this model reduces to a typical endemic-epidemic

model as seen frequently in the literature. Note that we also consider a negative binomial
likelihood with mean λ†it and overdispersion parameters ψi.

3.3. Delayed reporting, serial intervals, and incubation periods. The modeling chal-
lenges caused by delayed reporting of cases is closely tied with the serial interval of infection
and to the incubation period. The serial interval for Covid-19 has been estimated to be be-
tween 4 and 7 days, while the incubation period is between 4 and 9 days (Alene et al., 2021).
These quantities can vary between individuals, and can be hard to measure due to delayed
reporting/testing. García-García et al. (2021) showed that in Spain, cases may have peaked
several days before the observed peak in cases, but the delay varied across Spanish provinces.
Although we don’t attempt to estimate any of these factors individually, we may be able to ac-
count for their combination by including additional time lags in our model. Bracher and Held
(2020) showed that including cases from several time units in the past improved forecasting
ability of endemic-epidemic models in the presence of random serial intervals. Following
their guidance, we assume that the number of cases at time t is a weighted average of cases
at s time points in the past. Our force of infection is now:

λjit =
(
αAR
i + αspat

i

∑
j∼i

vji +

D∑
d=1

αmob
i,d wji,t−d

) S∑
s=1

ρs
Yj,t−s
Nj

=
(
αAR
i + αspat

i

∑
j∼i

vji
) S∑
s=1

ρs
Yj,t−s
Nj

+

D∑
d=1

αi,dwji,t−d
∑

1≤s<d
ρs
Yj,t−s
Nj

(4)

where
∑S

s=1 ρs = 1. Note that in the second term, we exclude terms where the mobility lag
is higher than the cases lag (e.g Yt−2,wt−1) as we don’t suspect any reporting delay with our
mobility data. If someone tests positive at t− 2, when they move at time t− 1, they should
no longer be infectious, thus their mobility won’t contribute to new cases.

It remains to specify D and S. In determining D, we first consider a univariate model for
case counts: Yt|Yt−1 ∼ Poisson(λt) with λt = φtYt−1 where φt is the effective reproduction
number at time t. If we solve for φt, and replace λt with Yt, then we arrive at a crude esti-
mate of Rt (Crude Rt) φt ≈ Yt

Yt−1
. To determine how many mobility lags to include in our

model, we visually examine the relationship of wt−h with Yt

Yt−1
for various lags h > 0 using

scatterplots. If wt−h has a strong relationship with Yt

Yt−1
, then we include this in our model.

Determining S is more challenging, but we can be fairly confident that S ≤ 2, as it is fairly
unlikely that a case would take 3 or more weeks from primary case to cause a secondary
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case, given that the serial interval and incubation period are likely less than 7 and 9 days
respectively (Alene et al., 2021). Thus we will investigate values of S = 1 and S = 2.

3.4. Underreporting. Epidemic curves are well-known to suffer from underreporting and
under-ascertainment (since our model can’t distinguish between the two, we will simply use
the term underreporting to encompass both). The number of cases is usually an underestimate
of the number of infections, because of testing capacity limitations and asymptomatic or min-
imally symptomatic cases going undetected. This is troublesome when conducting inference,
as our estimate of the α’s will be affected by the reporting probability. There are several
methods that account for underreporting, such as those in Wakefield, Dong and Minin (2019)
or Bracher and Held (2021), but this is still an open problem in endemic-epidemic modelling,
and we don’t provide a perfect solution here.

A computationally simple method to account for underreporting is to adjust the intensity
parameter for changes in testing via a log-linear model:

(5) Yit|Y t−1 ∼ Pois(γtλ
†
it)

where γt ∈ [0,1], log(γt) = βtest log
(

xt

maxt(xt)

)
, where xt is the number of tests performed

at time t. This method assumes that the effect of testing is time constant. In Madrid, this as-
sumption seemed reasonable and hence this method was employed. We present our estimated
γt in Appendix E.

In Castilla-Leon, however, a method that accounts for time-varying reporting effects is re-
quired. Although Bracher and Held (2021) present methods for estimating endemic-epidemic
model parameters in the presence of binomially thinned (underreported) case counts, it is un-
clear how these methods would generalize to the multivariate, mobility augmented case. We
therefore present a novel approach (presented in Appendix E) which will be used as a sensi-
tivity analysis in Castilla-Leon.

3.5. Summary Statistics. Although the parameters in our model are interpretable them-
selves, it is really their combinations that allow us to answer meaningful epidemiological
questions about infectious diseases. Examples of such questions are: What was the effective
reproduction number of Covid-19 in the first year of the pandemic? How many infected trips
does it take to lead to a new infection? What proportion of cases are attributable to mobil-
ity? These are all examples of questions that can be answered by combining estimates of our
model parameters.

The basic reproduction number, R0, is a succinct way to describe the infectiousness of a
disease, and is defined as the average number of secondary cases caused by an index primary
case in a fully susceptible population (Diekmann, Heesterbeek and Britton, 2013). When
dealing with more than one region (or some other strata), measuring R0 is nontrivial. Rewrit-
ing (1) in matrix form, we obtain

λt =ω+αY t−1

with αij = αvij . Diekmann, Heesterbeek and Metz (1990) use a limit argument to show that
after a large number of generations, the typical number of primary cases given secondary
cases is well described by the dominant eigenvalue of α (assuming α is irreducible and
aperiodic). They thus define R0 to be this dominant eigenvalue. We don’t believe that this
argument extends well to the case when α is temporally changing, since α only ‘acts’ on Y
for ≈ 1 generation (this is assuming that the generation time is one time unit). However, in
keeping with the endemic-epidemic modelling literature, we will present dominant eigenval-
ues over time where possible, as it is likely a good representation of infectiousness, but we
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suspect it is biased and is more noisy than R0 should be. Furthermore, since we are estimat-
ing infectiousness over time in a population with a changing proportion of susceptibles, we
consider dominant eigenvalues to be estimates of the effective reproduction number, Rt.

Where possible, we compute the dominant eigenvalue of the matrix with entries

(6) αAR
i I{i=j} + αspat

i vji +

D∑
d=1

(
αmob
i,d wji,t−d

)
where I is the indicator function. We will plot this over time t.

Reproduction numbers measure the number of new cases stemming from old cases, but
we also want to quantify the number of new cases stemming from the mobility of infectious
people. We summarize the number of new infections per infected trip over time as∑

i(
∑D

d=1α
mob
i,d

∑
j wji,t−d

Yj,t−1

Nj
)∑

i

∑D
d=1

∑
j wji,t−d

Yj,t−1

Nj

Although this may look cumbersone, it is simply a weighted average of the αmob
i,d ’s over time.

Furthermore, we can look at the number of infections per infected trip at the region level by
summing over t instead of i. This formula can be easily modified in the presence of a serial
interval.

3.6. Inference. All model parameters were estimated using Bayesian Markov chain
Monte Carlo. In particular, we used the No-U-Turn sampler readily available in Stan (Car-
penter et al., 2017) and its associated R package (Stan Development Team, 2021). Weakly
informative/vague priors were used for inference (see Table B2 for complete table of pri-
ors). Four chains with 1000 interations, with the first half being warmup were used for each
model. Trace plots were used to visually assess convergence of Markov chains. R̂ values with
a threshold of 1.01, as described in Vehtari et al. (2021), were also used to determine an ap-
propriate level of mixing. Note that a handful of parameters in the model for underreporting
presented in Appendix E did not meet this threshold, and is hence should be interpreted with
caution. Since each of our summary statistics is a function of the model parameters, we can
easily obtain credible intervals for each statistic by using draws from the joint posterior.

For model comparison, we approximate leave-one-out cross-validation using Pareto
smoothed importance sampling (PSIS) implemented in the loo R-package (Vehtari et al.,
2024).

4. Application. In this section, we apply our model to two Spanish Communities sep-
arately. In Section 4.1.1, we treat all of Castilla-Leon as a single region, which is mainly
used as an exploratory analysis to inform our multi-region (spatial) model. In 4.1.2, we apply
our multi-region model to the 245 subregions of Castilla-Leon and quantify the risk associ-
ated with travelling during the pandemic. We then apply our model to the 179 subregions of
Madrid in Section 4.2.

4.1. Assessing the risk associated with travelling in Castilla-Leon.

4.1.1. Castilla-Leon - aggregated model. A plot of the case, test, and mobility data for
all of Castilla-Leon is shown in Figure 2a. As noted by other authors, there is often a large
time lag between a peak in mobility and the subsequent peak in cases, and this effect appears
to change over time (Gottumukkala et al., 2021). However, mobility should only affect the
relative change in the number of infections, as mobility can only affect cases through current
infectious individuals coming into contact with susceptibles. To examine the relationship
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between mobility and infectiousness, we compute the Crude Rt over time and look at the
cross correlation between it and mobility. We found that mobility at time t − 2 and t − 1
show strong correlation with the Crude Rt at time t, followed by a sharp drop in correlation
(0.27 to 0.08) when mobility is lagged by 3 or more time units. For this reason, we will
consider the following mean as a starting point:

λt = αEX + αARyt−1 + αmob
1 wt−1yt−1 + αmob

2 wt−2yt−1

The fitted values of this model are shown in Figure A1. This plot suggests that mobility
is explaining the majority of the case counts. However, this seems too large and warrants
investigation. If we plot the Crude Rt versus the mobility (Figure A3), we can see that there
are two extremely high leverage points with high mobility and Crude Rt. These two points
correspond to the first weeks of March 2020, prior to lockdowns, and there were no mask
mandates or policies enacted to slow the spread. As a result of these high leverage points, the
effect of mobility (slope of the solid line in Figure A3) is too high. Although this plot is an
oversimplification of exactly what our model is doing when estimating the effect of mobility,
they warrant our attention. If we remove these points, the least squares line becomes much
shallower and fits the Crude Rt estimates much better, as seen in Figure A3.

We now fit the model without the first three weeks of March, with the results shown in Fig-
ure A2, where the autoregressive component is much more substantial relative to the mobility
component. For this reason, we will exclude these first three weeks of data when extending
our model to multiple regions.

4.1.2. Castilla-Leon – Multi-region Model. The results of fitting the multi-region model
is summarized in Figure 3. The movement component appears to be the strongest, followed
by the autoregressive component and the spatial component. In some regions the movement
component was very small, while it dominated the infections in others. Given that our results
can be sensitive to one or two time points, we suspect that the region-level mobility effects
are noisy. However, the aggregation of them is more likely to produce a clear signal.

When adjusting for testing using the method described by Equation 5, we found that the
estimated γt was very close to 1. This may be due to a time-dependent effect of testing on
the the number of reported cases. Another explanation is that that we may need region-level
testing data to tease out the potentially spatially heterogenous effect. For this reasons, we
did not control for testing in Castilla-Leon, acknowledge this as a limitation, and explore it
further in Appendix E. This may cause underestimation of PCAtM, dominant eigenvalues,
and infections per infected trip.

The proportion of cases attributable to movement (PCAtM) is presented in Table 1 for four
different models

1. No serial interval, two mobility lags, and no testing adjustment
2. No serial interval, two mobility lags, and testing adjustment
3. Serial interval of 2 weeks, 3 mobility lags, and no testing adjustment
4. No serial interval, 3 mobility lags, and no testing adjustment

Adjusting for testing had little effect on the PCAtM. Similarly, using a serial interval of 2
weeks (as opposed to 1 week) had little effect on the PCAtM, but the additional mobility lag
seems to be accounting for additional cases. However, the elpdloo-cv is lowest for model 1,
and we focus our results on this model.

The proportion of cases attributable to movement (PCAtM) and the trips per infection for
each region is shown in Figures 4a and 4b. Both the PCAtM and the trips per infection show a
high amount of heterogeneity between regions. The temporal variation in trips per infection,
averaged across Castilla-Leon are shown in Figure 5a. Based on this model, it takes roughly
70 infected trips to see a new infection.
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The temporally changing dominant eigenvalues computed from (6) are shown in Figure 6.
The dominant eigenvalue exceeding one seems to correspond with increases in case counts
in Castilla-Leon, with the exception of the third viral wave. This may be due to properties
of the virus at this time (such as a new variant), the drastic increase in testing that we had
trouble accounting for, or some other confounding factors.

For completeness, we refit Model 1 using a negative binomial likelihood. We found that
the PCAtM was larger than the one presented in Table 1. However, the uncertainty was larger
in each model component, and the model fit was deemed inappropriate based on visual in-
spection and PSIS. Thus, the additional flexibility in the model did not lead to an improved
model fit.

4.2. Assessing the risk associated with travelling in the Community of Madrid. For com-
pleteness, we present the results for Madrid with two major caveats: 1) a single large region
(Madrid City) contains 49.6% of the Community of Madrid’s population and 51% of the
Covid-19 cases and 2) the intra-regional mobility in Madrid City (10.2% of the Community
of Madrid’s mobility) shows a highly different pattern (see Figure C1) than the rest of the
mobility in the Community, with a peak during the first lockdown. Since the trend in case
counts is roughly the same as the rest of the region, but the mobility is highly different,
we do not believe that our model accurately captures the relationship between mobility and
infectiousness in Madrid City.

Figure 2b displays time series of weekly trips, tests, and cases aggregated across the com-
munity of Madrid. After removing the first three weeks of data (as with Castilla-Leon) and
correcting for changes in testing, we find that our assumption regarding the reproduction
number being a linear function of mobility is reasonable (see Figure C2). Furthermore, we
adjusted the per-contact-probability of infection for vaccinations (as described in Appendix
D), but found no substantial difference in our results.

The proportion of cases attributable to movement (PCAtM) is presented in Table 1 for
three different models:

1. No serial interval, three mobility lags, and testing adjustement
2. Serial interval, three mobility lags, and testing adjustment
3. Serial interval, excluding Madrid City, and testing adjustment

Noting that Model 3 is simply a subset of Model 2, the fit of Model 3 is shown in Figure
3. Mobility accounts for a substantial proportion of the cases, but the autoregressive term
explains the most. In the model with the serial interval, ρ1 was very close to zero, indicating
that the model with the serial interval is more appropriate. However, this may have occurred
due to the lag one mobility effect being very small, and our model is avoiding including that
term.

The spatial distribution of the PCAtM is shown in Figure 4c. Note that the regions with a
low PCAtM tend to be very close to Madrid City, while the regions with high PCAtM don’t
show a spatial pattern. This may seem unintuitive, as we may expect a higher PCAtM around
Madrid City due to gravity. However, it is likely that people stopped commuting in and out
of Madrid City, causing within-Madrid City trips to replace incoming/outgoing trips. Lower
amounts of mobility in the regions surrounding Madrid City will ultimately lead to lower
PCAtMs in those regions.

The number of infections per infected trip is shown both spatially and temporally in Fig-
ures 4d and 5b. Figure 4d suggests that the trips required for a new infection are spatially
correlated, indicated by the clusters of regions of the same colour. Figure 5b suggests that,
excluding Madrid City, roughly 140 infected trips are required for a new infection to arise.
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5. Discussion. In this paper we developed an infectious disease model where the num-
ber of contacts between people is a linear function of trips between regions. We showed that
this model is an extension of endemic-epidemic models frequently found in the literature.
We applied this model to two Spanish Communities with the intention of quantifying the
risk associated with travelling in each Community. In Castilla-Leon, we found that we could
relate just under half of the trips to our cellphone mobility data, while this was much lower
in Madrid. The potential reason for the disparity in results is that Madrid is much more pop-
ulation dense, and has a city-centre with over half the Covid-19 cases of the entire province.
This causes potential underestimation of the PCAtM and trips per infection, as our Madrid
model is likely underestimating the importance of mobility. Our model appears to work better
when regions are small, as our cellphone mobility data is more informative.

We found that this class of models is sensitive to large changes in case counts that oc-
curred early in the pandemic, as well as rapid changes in testing capacity. Although we took
great care in specifying each model component, developing robust methods for modeling the
infectiousness of the disease when using this class of models should be researched further.
We stress the importance that exploratory and diagnostic plots can greatly improve inference
and interpretation when using endemic-epidemic, or any infectious disease model.

One strength of this work is that we utilize rich mobility data and spatial data to model dis-
ease spread through a carefully parametrized infectious disease model. In doing so we were
able to assign a number to the risk associated with travelling during a pandemic. This frame-
work can be easily extended to include other spatial/temporal covariates such as mask usage,
if such data are available. We explored adjusting the α’s for the stringency index, which is an
aggregate measure of how strict policies are in specific regions Hale et al. (2021). However,
this index was extremely highly correlated with mobility, and thus was not appropriate to
include in our model, as they are largely measuring the same thing.

A further strength of this work is that it was done during a time period prior to mass vac-
cinations and the introduction of the major Covid-19 variants, which could have confounded
our analysis. This could also be viewed as a limitation, as we could have allowed the α’s to
change when the major variants (e.g Omnicron) arose, and could easily account for higher
vaccination rates using the methodology from this paper. In our analysis of the Community
of Madrid, too few people had been vaccinated for it to make any major difference in our re-
sults. Ideally, we would have mobility data over the course of the entire pandemic, so that we
could see how the risk associated with travelling changes with new variants and increasing
levels of immunity in the population.

A limitation of our work that we must emphasize is that we cannot associate individual
trips to individual infections, and thus cannot infer causality. Although we are confident that
mobility is required for Covid-19 to spread, we cannot be sure that the trips recorded in our
data are causing cases according to our model specification, as there may be confounding
factors associated with between-region mobility and case counts.

This work opens the door for many avenues of future research. Firstly, robust methods
for modeling infectiousness as a function of mobility (or any covariate) would be extremely
useful. For instance, a method utilizing quantiles would be insensitive to rapid changes in
the observed cases. Furthermore, although this paper presents a novel method for modelling
reproduction numbers based on mobility, we need to further theoretically examine how we
define reproduction numbers (i.e the dominant eigenvalue of the next-generation matrix) from
this class of models. Furthermore, we need to rethink how to estimate temporally changing
reproduction numbers from this class of models, especially as the model becomes more com-
plex.

Although this study has focussed on Covid-19, we want to emphasize that the model and
associated principles can be extended to a wide variety of infectious diseases, and various
forms of network data. Extensions and simplifications should be made on a case-by-case
basis, and should be guided by careful data exploration.
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PCAtM (95% CrI) ρ1 ˆelpdloo-cv

Castilla

1. No SI, No testing 44.96 (43.75, 46.31) - 134352.3
2. No SI, testing 43.79 (42.55, 44.88) - 134459.0
3. SI, no testing, additional lag 56.99 (55.95, 58.03) 0.99996 135044.2
4. No SI, no testing, additional lag 57.01 (55.94, 57.98) - 134996.7

Madrid
1. No SI, with testing 17.00 (16.11, 18.03) - 86181.6
2. SI, with testing 14.00 (13.12, 15.02)

0.00001 85857.4
3. SI, with testing (no Madrid City) 28.54 (26.76, 30.68)

TABLE 1
Percentage of cases attributable to movement (PCAtM) for various models fit to Castilla-Leon and Madrid data.

In models with a serial interval (SI), ρ1 is presented. Posterior medians and 95% credible intervals (CrI) are
presented for PCAtM, while posterior medians are presented for ρ1. Expected log predictive density, estimated

using leave-one-out cross-validation is presented. Note that roughly 3% of Pareto k were above 0.7 for the
Castilla models, while roughly 1.5% were above 0.7 for the Madrid models, indicating potential reliability

issues with PSIS-LOOCV.
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Fig 1: Time series of cases, trips, and tests between March 2020 and March 2021 (Castilla-
Leon), and March 2020 and May 2021 (Madrid).



MOBILITY NETWORKS AND COVID-19 TRAVEL RISK 17

Trips

0
1
10
100
1e3
1e4
1e5
1e6

(a) Castilla-Leon

Trips

0
1
10
100
1e3
1e4
1e5
1e6

(b) Madrid

Fig 2: Mean daily trips between regions, arranged by total rowwise mobility for improved
visual clarity. The darkness of the pixel indicates higher amounts of mobility. The diagonal
line indicates that there is generally more mobility within regions than there is between other
pairs of regions.
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Fig 3: Results of our multi-region mobility extended endemic-epidemic model. For both
Castilla-Leon (left) and Madrid (right), we present the results for the entire region, along-
side a region that showed a strong mobility effect (Eras de Renueva and El Álamo), and
a region showing a weaker mobility effect (Parquesol and Alcobendas). The 95% credible
interval for each model component is presented, alongside their aggregation (λ†t ). Observed
case counts are shown as black points. The locations of the regions depicted in c)-f) are shown
in Appendix F. Note that the endemic and spatial components were neglible, and thus were
omitted for improved visual clarity.
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Fig 4: Spatial distribution of proportion of cases attributable to movement (PCAtM) and the
number of trips associated with one new infection. The trips per infection in Madrid City
(white region in d) was calculated to be 3753.
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Fig 5: Temporal variation of number of trips associated with one new infection. Madrid City
was excluded from this analysis, as the data quality issues caused this number to be implau-
sibly high. The posterior median, alongside 95% credible intervals are presented.



MOBILITY NETWORKS AND COVID-19 TRAVEL RISK 21

0.9

1.0

1.1

1.2

Apr 2020 Jul 2020 Oct 2020 Jan 2021

R
ef

f

Fig 6: Posterior median and 95% credible interval of Rt in Castilla-Leon. An Rt > 1 will
generally lead to an increase in cases.
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Appendix A Treating Castilla-Leon as a single region. These figures were part of
our exploratory analysis that guided model selection.
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Fig A1: Single region, mobility-extended endemic-epidemic model fit to aggregate Castilla-
Leon data, separated into components.
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Fig A2: Single region, mobility-extended endemic-epidemic model fit to aggregate Castilla-
Leon data with the first three weeks of data removed.
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Fig A3: Crude Rt vs number of trips. There are two high leverage points which correspond to
the first three weeks of the pandemic. These have a strong influence on the effect of mobility
and cause the solid line to be much steeper than it should be. The dotted line is the least
squares (LS) line with the two influential points removed, and visually fits the data much
better.
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Appendix B Priors.

Parameter description Prior
αmob
1,2,3 Mobility effects N(0, .1)

αAR Autoregressive effect N(0,2)

αspat Spatial effect N(0,500)
βtest Test effect N(0,1)

ρ Serial interval distribution Dirichlet(1,1)
TABLE B2

Prior distributions used for models used in the main manuscript. Not all parameters are present in all models.
Also note that these parameters vary for each region, with the subscript i removed for clarity.
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Appendix C Madrid: Supplementary plots.

2

4

6

8

10

Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021

Tr
ip

s 
(m

ill
io

ns
)

Incoming/Outgoing

Within

(a) Comparing the number of trips within Madrid City
with the incoming/outgoing mobility of Madrid City

30

35

40

45

50

Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021

Tr
ip

s 
(m

ill
io

ns
)

(b) Madrid - all mobility not involving Madrid City

Fig C1



26

40 45 50 55 60 65

1

2

3

4

5

Trips (millions)

C
ru

de
 R

t

LS line − with weeks 2 and 3
LS line − no weeks 2 and 3

(a) Community of Madrid - Trend lines for
CrudeRt vs. lag-one mobility including (solid-
line) and excluding (dotted line) the first 3
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Appendix D Accounting for Vaccinations in the Community of Madrid. In Spain,
vaccines started to reach the general public in January of 2021, with about 30% of the public
having at least one dose of the vaccine by May 2021. Thus, this may impact our Madrid
results and should be explored. Vaccine data has been incorporated into endemic-epidemic
models in previous work (Herzog, Paul and Held, 2011), and we follow suit here. The im-
munity induced by vaccines should reduce the per-contact probability of infection. In other
words, the per-contact probability of infection will change over time as the proportion of
people vaccinated increases. Using the univariate model with D = 1 as an example, our force
of infection is now

λvacc
t = Ct−1 × p(ut−1)×

Yt−1
N

where

g[p(ut−1)] = p0 − τut−1
where p0 is the per-contact probability of infection in an unvaccinated population, τ is a
reduction in infection probability due to vaccination, g is a link function, and ut is the pro-
portion of the population that is vaccinated at time t. The force of infection becomes

λvacc
t = (c0 + cmobwt−1) · g−1(p0 − τut−1)

Yt−1
N

.

The identity link would lead to

λvacc
t =

(
αAR + αmobwt−1 − (c0 + cmobwt−1)τut−1

)Yt−1
N

which allows for potentially negative values of λt without some numerically unstable con-
straints. Furthermore, this would assume a linear relationship between proportion vaccinated
and infection probability, which seems unrealistic. Instead, we used a log link leading to

λvacc
t =

(
αAR + αmobwt−1)e

−τut−1
)Yt−1
N

.
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Appendix E Accounting for underreporting via a hierarchical model.
In Madrid, we accounted for underreporting my correcting the intensity by a factor γt that

is a function of testing. The plot of γt is shown in Figure E1.
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Fig E1

For Castilla-Leon, we require a more complex method, as the relationship between the
infections and testing was more complex. Let the true case counts in region i at time t be Zit.
Then we assume:

Yit|Zit ∼ Bin(Zit, πt)

Zit|Zt−1 ∼ Pois(λZi,t)

where λZit is the same as λ†it in Equation 3 but with Z’s instead of Y ’s, and πt is the reporting
probabiliity at time t. πt is assumed to be the same across regions for computational and iden-
tifiability purposes. Conducting inference on this model is challenging, as it involves I × T
latent discrete variables. The unbounded, discrete nature of these parameters makes modern
Bayesian computation with Hamiltonian Monte Carlo (HMC) or Integrated Nested Laplace
Approximations (INLA) infeasible. We thus use normal approximations in both layers of the
hierarchical model:

Yit|Zit∼̇N(Zitγt,Zitπt(1− πt))

Zit|Zt−1∼̇N(λZit, λ
Z
it)

where ∼̇ means ‘approximately distributed as’. The larger the counts in each region, the
better this approximation will be.

We fit this model to the Castilla-Leon data with no serial interval and two mobility lags.
We chose this simpler model for computational purposes. We also note that our R̂ values
were relatively high for the first 10 time points (∼ 1.15) or so, so these results should be
interpretted with caution.
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Figure E2a shows the 95% credible interval of what we estimate to be the true epidemic
curve based on the hierarchical model above. We can see that our model is consistent with the
idea that the third wave was an artifact of a surge in testing. Furthermore, the autoregressive
portion of the model seems to be explaining a majority of the cases. The 95% credible interval
of the reporting probability is shown in Figure E2b. Although this model did not use testing
data, the estimated reporting probability still closely follows the pattern in the testing data,
with the exception of the first three months, when testing was not readily available to the
public.
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(a) 95% credible intervals for each model
component. Points are observed cases.
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Fig E2: Model results for Castilla-Leon with 1 week serial interval, two mobility lags, and a
hierarchical component to account for underreporting.

Although the mobility component does not appear dominant in this case, it is still larger
than it was in the model where we simply corrected for changes in testing. This indicates
that underreporting is likely causing us to underestimate the true number of cases that are
associated with mobility.
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Appendix F Locations of regions depicted in Figure 2.
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Fig F1: Locations of regions depicted in Figure 3
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