
Appendix: Selected Answers

Chapter 1
Section 1.2
1.2.1 (a) 5/6. (b) 1. (c) 1/2.
1.2.4 No.
1.2.8 No.
1.2.10 Yes.
Section 1.3
1.3.1 (a) 0.9. (b) 0.1 is the smallest possible value of P ({1}).
1.3.4 The maximum is 25% and the minimum is 15%.

Section 1.4
1.4.1 (a) 1/1679616. (b) 1/279936. (c) 1/209952.
1.4.6 P (sum ≥ 4) = 1− 1/221− 8/663 = 652/663.
1.4.10 5/12.

Section 1.5
1.5.1 (a) 0.75. (b) The conditional probability equals 0.762.
1.5.4 P (Þve Spades | at least 4 Spades) .= 0.044.
1.5.9 (a) A and B are not independent. (b) A and C are independent. (c) A
and D are independent. (d) C and D are independent. (e) A and C and D are
not all independent.

1.5.10 We have from the Exercise 1.4.11 solution that P (all red) = 5/4488,
while P (all blue) = 35/816. Hence, P (all red | all same color) = P (all red) /P (all
same color) = (5/4488)/[(5/4488) + (35/816)] = 2/79

.
= 0.025.

Section 1.6
1.6.2 limn→∞ P ([1/4, 1− e−n]) = 3/4.
1.6.3 limn→∞ P (An) = P (A) = P (S) = 1.
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Chapter 2
Section 2.1
2.1.1(a) mins∈SX(s) = X(1) = 1. (b) maxs∈SX(s) does not exist. (c) mins∈S
Y (s) does not exist. (d) maxs∈S Y (s) = Y (1) = 1.
2.1.4 Z(1) = 3, Z(2) = 20, Z(3) = 87, Z(4) = 1032, Z(5) = 15, 635, Z(6) =
279, 948.

2.1.7 No.
Section 2.2
2.2.1 X must equal 0, 1, or 2, and P (X = 0) = 1/4, P (X = 1) = 1/2,
P (X = x) = 0 for x 6= 0, 1, 2.
2.2.5 (a) P (X = 1) = .3, P (X = 2) = .2, P (X = 3) = .5, and P (X = x) = 0
for all x /∈ {1, 2, 3} . (b) P (Y = 1) = .3, P (Y = 2) = .2, P (Y = 3) = .5, and
P (Y = y) = 0 for all y /∈ {1, 2, 3} . (c) P (W = 2) = 0.09, P (W = 3) = 0.12,
P (W = 4) = 0.34, P (W = 5) = 0.2, P (W = 6) = 0.25, and P (W = w) = 0 for
all other choices of w.

2.2.8 Note that each number w ∈ {0, 1, . . . , 99} can occur and P (W = w) =
1/100.

Section 2.3
2.3.1 pY (2) = 1/36, pY (3) = 2/36, pY (4) = 3/36, pY (5) = 4/36, pY (6) = 5/36,
pY (7) = 6/36, pY (8) = 5/36, pY (9) = 4/36, pY (10) = 3/36, pY (11) = 2/36,
pY (12) = 1/36, and pY (y) = 0 otherwise.

2.3.5 pW (1) = 1/36, pW (2) = 2/36, pW (3) = 2/36, pW (4) = 2/36 + 1/36 =
3/36, pW (5) = 2/36, pW (6) = 2/36 + 2/36 = 4/36, pW (8) = 2/36, pW (9) =
1/36, pW (10) = 2/36, pW (12) = 2/36+2/36 = 4/36, pW (15) = 2/36, pW (16) =
1/36, pW (18) = 2/36, pW (20) = 2/36, pW (24) = 2/36, pW (25) = 1/36,
pW (30) = 2/36, pW (36) = 1/36, and pW (w) = 0 otherwise.

2.3.10 P (X2 ≤ 15) = 369/625.
2.3.15 (a)

¡
10
3

¢
(.35)3 (.65)7 . (b) (.35) (.65)9 . (c)

¡
9
1

¢
(.35)2 (.65)8 .

2.3.24 Z ∼ Binomial(n1 + n2, p).
2.3.28 Z ∼ Negative Binomial(r + s, θ) .
Section 2.4
2.4.1 (a) P (U ≤ 0) = 0. (b) P (U = 1/2) = 0. (c) P (U < −1/3) = 0.
(d) P (U ≤ 2/3) = 2/3. (f) P (U < 1) = 1. (g) P (U ≤ 17) = 1.
2.4.4 (a) c = 2. (b) c = n+ 1. (c) c = 3/

¡√
24
¢
. (d) c = 1.

2.4.11We have that f (x) ≥ 0 for every x, and putting u = xα, du = αxα−1 dx,
we have

R∞
0
αxα−1e−x

α

dx =
R∞
0
e−u du = −e−u|∞0 = 1.
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Section 2.5
2.5.2 FX(x) = 0 when x < 1, FX(x) = 1/6 when 1 ≤ x < 4, FX(x) = 2/6
when 4 ≤ x < 9, FX(x) = 3/6 when 9 ≤ x < 16, FX(x) = 4/6 when 16 ≤ x <
25, FX(x) = 5/6 when 25 ≤ x < 36, andFX(x) = 1 when 36 ≤ x.
2.5.3(a) No. (c) Yes. (g) No.
2.5.7 limn→∞ |F (2n)− F (n)| = 0.
2.5.11 F (x) = (1 + e−x)−1 .
2.5.15 F (x) = 1

2e
x when x ≤ 0 and F (x) = 1

2 +
1
2 (1− e−x) when x > 0.

Section 2.6
2.6.3 Let h(x) = cx + d. Then Y = h(X) and h is strictly increasing, so

fY (y) = fX(h
−1(y)) / |h0(h−1(y))| = e−[y−d−cµ]2/2c2σ2/cσ√2π.

2.6.13 Y ∼ Weibull(α/β) .
2.6.15 Y ∼ Exponential(1) .
Section 2.7
2.7.1 FX,Y (x, y) = 0 when min[x, (y + 2)/4] < 0, FX,Y (x, y) = 1/3 when 0 ≤
min[x, (y + 2)/4] < 1, and FX,Y (x, y) = 1 when min[x, (y + 2)/4] ≥ 1.
2.7.3 (a) pX(2) = pX(3) = pX(−3) = pX(−2) = pX(17) = 1/5, with pX(x) = 0
otherwise (d) P (Y = X) = 0 since this never occurs.

2.7.4 (a) C = 4, and P (X ≤ 0.8, Y ≤ 0.6) .= 0.0863.
2.7.6 FX,Y (x, y) = 1− e−λ min(x, y1/3) for x, y > 0, otherwise equals 0.
2.7.11 (a) C = 2. (b) We have that fX (x) = 2e−2xso X ∼ Exponential(2) and
fY (y) = 2e

−y (1− e−y) for y > 0.
Section 2.8
2.8.1 (a) pX(−2) = 1/4, pX(9) = 1/4, pX(13) = 1/2 otherwise pX(x) = 0.
(b) pY (3) = 2/3, pY (5) = 1/3, otherwise pY (y) = 0. (c) Yes.

2.8.5 (a) P (Y = 4 |X = 9) = 1/6. (c) P (Y = 0 |X = −4) = 0.
2.8.7 (a) C = 4 and X and Y are not independent since fY |X(y |x) 6= fY (y).
2.8.12 Since X and Y are independent, P (X = 1 |Y = 5) = P (X = 1) = 1/3.

2.8.19 P (X2 = f2 |X1 = f1) =
¡
n−f1
f2

¢ ³
θ2
1−θ1

´f2 ³
1− θ2

1−θ1

´n−f1−f2
, soX2 |X1 =

f1 ∼ Binomial(n− f1, θ2/ (1− θ1)) .
2.8.22 The distribution function ofX(3), for 0 < x < 1, is given by P

¡
X(3) ≤ x

¢
= 10x3 (1− x)2+5x4 (1− x)+x5 = 10x3−15x4+6x5, so f(x) = 30x2−60x3+
30x4 = 30x2 (x− 1)2. This is the Beta(3,3) density.
Section 2.9
2.9.2 (a) fX,Y (x, y) = e−x for x ≥ 0 and 1 ≤ y ≤ 4, otherwise fX,Y (x, y) = 0.
(b) h(x, y) = (x+ y, x− y). (c) h−1(z,w) = ((z +w)/2, (z −w)/2).
(d) Here J(x, y) = ∂h1

∂x
∂h2
∂y − ∂h2

∂x
∂h1
∂y = |(1)(−1)− (1)(1)| = 2, so fZ,W (z,w) =

fX,Y (h
−1(z,w)) / |J(h−1(z,w))| = fX,Y ((z+w)/2, (z−w)/2) / 2, which equals
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e−(z+w)/2 for (z + w)/2 ≥ 0 and 1 ≤ (z − w)/2 ≤ 4, i.e., for z ≥ 1 and
max(−z, z − 8) ≤ w ≤ z − 2, otherwise fZ,W (z,w) = 0.
2.9.6 (a) pZ,W (5, 5) = 1/7, pZ,W (8, 2) = 1/7, pZ,W (9, 1) = 1/7, pZ,W (8, 0) =
3/7, pZ,W (12, 4) = 1/7, and pZ,W (z,w) = 0 otherwise.

Section 2.10
2.10.2 (a) F−1(t) = t, so X = U (b) F−1(t) =

√
t, so X =

√
U.

2.10.6 x = F−1(u) = ln (u/ (1− u)) for 0 ≤ u ≤ 1.
2.10.10 x = F−1(u) = ln (2u) and, for 1/2 ≤ u ≤ 1, x = F−1(u) = − ln 2 (1− u) .

Chapter 3
Section 3.1
3.1.1 (a) E(X) = 8/7. (b) E(X) = 1. (c) E(X) = 8.
3.1.3 (a) E(X) .= −14.4. (d)E(Y 2) .= 123.3.
3.1.7 E(XY ) = 30.
3.1.9 E(X) = 6.
3.1.12 (b) E(Y −X) = E(Y )− E(X) = −(1− θ)101(1/θ + 100).
Section 3.2
3.2.1 (a) C = 1/4, E(X) = 7. (b) C = 1/16, E(X)

.
= 7.04. (c) C = 5/3093

E(X)
.
= −4.19.

3.2.4 (a) E(X) = 57/70. (b) E(Y ) = 157/280.
3.2.8 E(Y + Z) = 49/36.

3.2.15 E (X) =
R 1
0 x

Γ(a+b)
Γ(a)Γ(b)x

a−1 (1− x)b−1 dx = Γ(a+b)
Γ(a)Γ(b)

R 1
0 x

a (1− x)b−1 dx =
Γ(a+b)
Γ(a)Γ(b)

Γ(a+1)Γ(b)
Γ(a+b+1) =

Γ(a+b)
Γ(a)Γ(b)

aΓ(a)Γ(b)
(a+b)Γ(a+b) =

a
a+b .

Section 3.3
3.3.1 (a) Cov(X,Y ) = 2/3. (b) Var(X) = 2, Var(Y ) = 32/9. (c) Corr(X,Y ) =
1/4.

3.3.4 E(X) = 63/80, E(Y ) = 61/72, Var(X) = 191/6400,
Var(Y ) = 3253/181440, Cov(X,Y ) = −1/1920.
3.3.10 Corr(X,Y ) = sgn(c), where sgn(c) = 1 for c > 0, sgn(c) = 0 for
c = 0, and sgn(c) = −1 for c < 0, (a) limc&0Cov(X,Y ) = limc&0 c = 0,
(b)limc%0Cov(X,Y ) = limc%0 c = 0.
3.2.17 Var(X) = 2.

Section 3.4
3.4.1 (a) rZ(t) = t/(2− t) (b) E(Z) = 2, E(Z2) = 6.
3.4.4 rY (t) = t4rX(t3).
3.4.11 rX (t) = θr (1− t (1− θ))−r provided |t (1− θ)| < 1.
3.4.15 Write Z = µ+ σX, where X ∼ Normal(0, 1). Then mZ(s) = E(e

sZ) =

E(es(µ+σX)) = esµ +E(esσX) = esµ +mX(σs) = e
sµ+ e(σs)

2/2 = esµ + eσ
2s2/2.
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3.4.25mSN (s) = rN (mX1 (s)) = θ/
³
1− λ

λ−s (1− θ)
´
,m0

SN
(0) = (1− θ) / (λθ) .

Section 3.5
3.5.1 (a) E(X |Y = 3) = 5/2. (b) E(Y |X = 3) = 22/3. (c) E(X |Y = 2) =
5/2, E(X |Y = 17) = 3. (d) E(Y |X = 2) = 5/2.

3.5.5 E(earnings |Y = �takes course�) = $2700, E(X |Y = �doesn�t take
course�) = $2100, E(earnings) = $2340

3.5.14 (a) Var(X) .= 0.244967. (b) Var(E(X |Y )) .= 0.0000002196. (c) Var(X |Y )
= (8/49)(49+8064Y 4+98304Y 8)/(3+256Y 4)2. (d) E(Var(X |Y )) .= 0.244967.
Section 3.6
3.6.1 P (Z ≥ 7) ≤ 3/7.
3.6.6 Largest value is Cov(Y,Z) .= 38.73 and smallest is Cov(Y,Z) .= −38.73.
Therefore, rXY is as stated.

3.6.11 P (X /∈ (x̄− 2�s, x̄+ 2�s)) ≤ �s2X
(2�sX)

2 =
1
4 , so the largest possible proportion

is 1/4.

Section 3.7
3.7.1 E(X1) = 3, E(X2) = 0, and E(Y ) = (1/5)E(X1) + (4/5)E(X2) = 3/5.

Chapter 4
Section 4.1
4.1.2 If Z is the sample mean, then P (Z = 1) = 1/36, P (Z = 1.5) = 2/36,
P (Z = 2) = 3/36, P (Z = 2.5) = 4/36, P (Z = 3) = 5/36, P (Z = 3.5) = 6/36,
P (Z = 4) = 5/36, P (Z = 4.5) = 4/36, P (Z = 5) = 3/36, P (Z = 5.5) = 2/36,
and P (Z = 6) = 1/36.

4.1.4 If Z is the sample mean, then P (Z = 0) = N
N+M

N−1
N+M−1 , P (Z = 0.5) =

2 N
N+M

M
N+M−1 , and P (Z = 1) =

M
N+M

M−1
N+M−1 .

4.1.8 Y ∼ Poisson(nλ).
Section 4.2
4.2.2 For any L > 0, P (|Xn−0| ≥ L) = P (Y n ≥ L) = P (Y ≥ L1/n) = 1−L1/n →
0 as n→∞, so Xn → 0 in probability.

Section 4.3
4.3.1 Note that Zn = Z unless 7 ≤ U < 7 + 1/n2. Hence, if U < 7, then
Zn = Z for all n, so of course Zn → Z. Also, if U > 7, then Zn = Z whenever
1/n2 < 7 − U , i.e., n > 1/

√
7− U , so again Zn → Z. Hence, P (Zn → Z) ≥

P (U 6= 7) = 1− P (U = 7) = 1− 0 = 1, i.e., Zn → Z with probability 1.

4.3.5 P (Xn → X and Yn → Y ) ≥ 1− P (Xn 6→ X)− P (Yn 6→ Y ).

4.3.12 This is false.
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Section 4.4
4.4.1 Here limn→∞ P (Xn = i) = 1/3 = P (X = i) for i = 1, 2, 3, so
limn→∞ P (Xn ≤ x) = P (X ≤ x) for all x, so Xn → X in distribution.

4.4.5P (S ≤ 540) ≈ 0.6915.
4.4.16 P (Mn ≤ m) = P (

√
n(Mn−0)√

15
≤

√
n(m−0)√
15

) ≈ P (Z ≤
√
n(m−0)√
15

), where

Z ∼ N(0, 1).
Section 4.5
4.5.1 This integral equals

√
2πE(cos2(Z)), where Z ∼ N(0, 1).

4.5.4 n ≥ 9 (10) /(.1)2 = 9000.0.
4.5.11 n ≥ 9/ ¡4δ2¢ .
Section 4.6
4.6.1 (a) U ∼ N(44, 629). V ∼ N(−18 − 8C, 144 + 25C2). (b) U and V are
independent if and only if C = −24/125.
4.6.3 C1 = 1/

√
5. C2 = −3. C3 = 1/

√
2. C4 = 7. C5 = 2.

4.6.11We see that fZ(−z) = Γ((n+1)/2)(1+(−z)2/n)−(n+1)/2/Γ(n/2)√πn =
Γ((n + 1)/2)(1 + z2/n)−(n+1)/2/Γ(n/2)

√
πn = fZ(z). Then using the substi-

tution s = −t, we have P (Z < −x) = R−x
−∞ fZ(t) dt = − R∞

x
fZ(−s) (−ds) =R∞

x fZ(s) ds = P (Z > x).

Chapter 5
Section 5.1
5.1.1 The mean survival times for the control group and the treatment group
are 93.2 days and 356.2 days, respectively. As we can see, there is a big differ-
ence between the two means, which might suggest that the treatment is indeed
effective, but we can�t base our conclusions about the effectiveness of the treat-
ment based only on these numbers. We have to consider sampling variability as
well.

5.1.3 For those who are still alive their survival times will be longer than the
recorded values, so these data values are incomplete.

Section 5.2
5.2.1 In Example 5.2.1 the mode is given by 0. In Example 5.2.2 the mode
of this density is 1. In both cases the mode is at the extreme left end of the
distribution and so doesn�t seem like a very good predictor.

5.2.3 The density is given by .5 (2π)−1/2 exp{− (x+ 4)2 /2}+
.5 (2π)−1/2 exp{− (x− 4)2 /2} for −∞ < x <∞.
5.2.8 Suppose that X ∼ Beta(a, b). We have that E (X) = a/ (a+ b) with

E((X − a/ (a+ b))2) = ab/ (a+ b+ 1) (a+ b)2. The mode is given by
(a− 1) /(a+b−2) andE((X−(a− 1) / (a+ b− 2))2) = ab/ (a+ b+ 1) (a+ b)2+
(a/(a+ b)− (a− 1)/(a+ b− 2))2 ≥ E((X − a/ (a+ b))2). Therefore, the mean
is a better predictor.
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Section 5.3
5.3.1 The statistical model for a single response consists of three probability
functions {f1, f2, f3} , where f1 is the probability function for the Bernoulli(1/2)
distribution, f1 is the probability function for the Bernoulli(1/3) distribution,
and f3 is the probability function for the Bernoulli(2/3) distribution. Then
(x1,x2,...,x5) is a sample from one of these Bernoulli(θ) distributions.

5.3.6 The Þrst quartile of the Uniform[0, β] distribution is c = 0.25β. Since c is
a 1-1 transformation of β, we can parameterize this model by the Þrst quartile.

5.3.9
Pn
i=1(xi−µ)2 =

Pn
i=1(xi− x̄+ x̄−µ)2 =

Pn
i=1((xi− x̄)2+2(xi− x̄)(x̄−

µ) + (µ − x̄)2) = Pn
i=1(xi − x̄)2 − 2(µ − x̄)

Pn
i=1(xi − x̄) +

Pn
i=1(µ − x̄)2 =Pn

i=1(xi − x̄)2 + n(µ− x̄)2 since
Pn
i=1(xi − x̄) =

Pn
i=1 xi − nx̄ = 0.

5.3.11 The Þrst quartile of a N(µ, σ2) distribution is c = µ+σz.25, where z.25 is
the Þrst quartile of the N(0, 1) distribution, i.e., Φ (z.25) = .25. But we see from
this that several different values of (µ,σ2) can give the same Þrst quartile, e.g.,
(µ, σ2) = (0, 1) and (µ, σ2) = (z.25/2, 1/4) both give rise to normal distributions
whose Þrst quartile equals z.25. Therefore, we cannot parameterize this model
by the Þrst quartile.

Section 5.4
5.4.1 FX(x) = 0 when x < 1, FX(x) = 4/10 when 1 ≤ x < 2, FX(x) = 7/10
when 2 ≤ x < 3, FX(x) = 9/10 when 3 ≤ x < 4, FX(x) = 1 when 4 ≤
x, fX(1) = 4/10, fX(2) = 3/10, fX(3) = 2/10, fX(4) = 1/10, and µX = 2, σ

2
X =

1.

5.4.4 (a) fX(0) = a/N, fX(1) = (N − a) /N. This is a Bernoulli((N − a) /N)
distribution. (b) P

³
�fX(0) = fX(0)

´
= P

³
n �fX(0) = nfX(0)

´
=
¡

a
n−nfX(0)

¢¡
N−a
nfX(0)

¢
/
¡
N
n

¢
since n �fX(0) ∼ Hypergeometric(N, a, n) . (c) We

have that n �fX(0) ∼ Binomial(n, a/N) so P
³
�fX(0) = fX(0)

´
= P

³
n �fX(0) = nfX(0)

´
= P (number of 0�s in the sample equals nfX(0)) =¡

n
nfX(0)

¢
(a/N)nfX(0) (1− a/N)n−nfX(0) .

5.4.9 (a) fX(0) = a/N, fX(1) = b/N, fX(2) = (N − a− b) /N. (b) Assum-
ing f1, f2, f3 are nonnegative integers summing to n (otherwise probability is

0), the probability is
¡
a
f0

¢¡
b
f1

¢¡
N−a−b
f2

¢
/
¡
N
n

¢
. (c) The probability that �fX(0) =

f0, �fX(1) = f1 and �fX(2) = f2 is
¡

a
f0 f1 f2

¢
(a/N)f0 (b/N)f1 ((N − a− b) 6 /N)f2 .

5.4.12 When fX(0) = a/N is unknown we estimate it by �fX(0). Now N =

a/fX(0), so we can estimate N by setting �N = a/ �fX(0), provided �fX(0) 6= 0.
Section 5.5
5.5.1 (a) �fX(0) = .2667, �fX(1) = .2, �fX(2) = .2667, and �fX(3) = �fX(4) =
.1333. (b) �FX(0) = .2667, �FX(1) = .4667, �FX(2) = .7333, �FX(3) = .8667, and
�FX(4) = 1.000. (d) The mean x̄ = 15 and the variance s2 = 1.952. (e) The
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median is 2 and the IQR = 3. According to the 1.5 IQR rule, there are no
outliers.

5.5.6 The distribution is skewed to the right, so we choose the median as a
measure of location and the IQR as a measure of spread.

5.5.7 ψ(µ) = x0.25 = µ+ σ0z0.25, where z0.25 satisÞes Φ (z0.25) = .25.

5.5.13 ψ(θ) = 2θ(1− θ).

Chapter 6
Section 6.1
6.1.1 The appropriate statistical model is the Binomial(n, θ), where θ ∈ Ω =
[0, 1] is the probability of having this antibody in the blood (we can also think of
θ as the unknown proportion of the population who have this antibody in their
blood). The likelihood function is given by L(θ | s) = ¡ns¢θs(1− θ)n−s, where s
is the number of people whose result was positive. The likelihood function for
n = 10 people and s = 3 is given by L(θ | 3) = ¡103 ¢θ3(1− θ)7.
6.1.3 The likelihood function is given by L(θ |x1, ...., x20) = θ20 exp(− (20x̄) θ).
By the factorization theorem (Theorem 6.1.1) x̄ is a sufficient statistic, so we
only need to observe its value to obtain a representative likelihood. The likeli-
hood function when x̄ = 5.2 is given by L(θ |x1, ...., x20) = θ20 exp(−20 (5.2) θ).
6.1.7 The likelihood function is given by L(θ |x1, ..., xn) = θnx̄e−nθ/

Qn
i=1xi!.

By the factorization theorem x̄ is a sufficient statistic. If we differentiate
lnL(θ |x1, ..., xn) = − lnQxi! + nx̄ ln θ − nθ, we get (lnL(θ |x1, ..., xn))0 =
nx̄/θ − n and setting this equal to 0 gives the solution θ = x̄. Therefore, we
can obtain x̄ from the likelihood and we conclude that it is a minimal sufficient
statistic.

6.1.13 The likelihood function is given by L(θ |x1, ..., xn) = θ−nI[x(n),∞) (θ)
when θ > 0. By the factorization theorem x(n) is a sufficient statistic. Now
notice that the likelihood function is 0 to the left of x(n) and positive to the
right. So given the likelihood, we can determine x(n) and it is minimal sufficient.

Section 6.2
6.2.1 The MLEs are �θ(1) = a, �θ(2) = b, �θ(3) = b, and �θ(4) = a.
6.2.4 The likelihood function is L(θ |x1, ..., xn) = e−nθθnx̄, the log-likelihood
function is l(θ |x1, ..., xn) = −nθ + nx̄ ln θ and the score function is given by
S(θ |x1, ..., xn) = −n+nx̄/θ. Solving the score equation gives �θ(x1, ..., xn) = x̄.
Note that since x̄ ≥ 0, we have ∂S(θ |x1,...,xn)

∂θ

¯̄̄
θ=x̄

= −nx̄
θ2

¯̄
θ=x̄

= −n
x̄ < 0. So x̄

is the MLE.

6.2.9 The likelihood function is L(α |x1, ..., xn) = αn (
Qn
i=1 (1 + xi))

−(α+1)
,

the log-likelihood function is l(α |x1, ..., xn) = n lnα− (α+ 1)
Pn
i=1 ln (1 + xi) ,

and the score function is S(α |x1, ..., xn) = n
α −

Pn
i=1 ln (1 + xi) . Solving the

score equation gives �α(x1, ..., xn) = n/
Pn
i=1 ln (1 + xi) . Note also that

∂
∂αS(α |

x1, ..., xn) = − n
α2 < 0 for every α, so �α is the MLE.
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6.2.13 The log-likelihood function is given by l(µ |x1, ..., xn) = −n (x̄− µ)2 /2,
and as a function of µ, its graph is a concave parabola and its maximum value
occurs at x̄. So if x̄ ≥ 0, this is the MLE. If x̄ < 0, however, the maximum
occurs at 0 and this is the MLE.

Section 6.3
6.3.1 This is a two sided z-test with the z statistic equal to −0.54 and the
P-value is equal to 0.592. So there is no evidence against H0. A .95-conÞdence
interval for the unknown µ is (4.442, 5.318). Note that the conÞdence interval
contains the value 5, which conÞrms our conclusion using the above test.

6.3.4 This is a two sided t-test with the t statistic equal to 9.12 and (using the
Student(3) distribution) the P-value equals 0.452, so we don�t have evidence
against the null hypothesis.

6.3.8 The P-value equals 0.32, so we conclude that there is no evidence against
H0. A .90-conÞdence interval for θ is given by (0.559832, 0.680168) which in-
cludes the value 0.65, so agrees with the result of the above test.

6.3.19 The form of the power function associated with the above hypothesis

assessment procedure is given by β (µ) = 1−Φ
³
µ0−µ
σ0/

√
n
+ z1−α

´
.

Section 6.4
6.4.1 An approximate .95-conÞdence interval for µ3 is given by (26.027, 151.373).

6.4.4 Let ψ (µ) = exp (µ) then ψ
0
(µ) = exp (µ) . By the delta theorem (6.4.1)

an approximate γ-conÞdence interval for ψ (µ) is given by (−5.697 5, 42.046) .
6.4.13 For a random variable with this distribution, we have that E �F

¡
Xi
¢
=Pn

j=1 x
i
(j)(

�F
¡
x(j)

¢ − �F
¡
x(j−1)

¢
) where we take x(0) = −∞. Now �F

¡
x(j)

¢ −
�F
¡
x(j−1)

¢
= 1/n since all the x(j) are distinct.

Section 6.5
6.5.1 The Fisher information is nI(σ2) = n/2σ4.

6.5.3 The Fisher information is nI(α) = n/α2.
6.5.5 An approximate .90-conÞdence interval is given by 2

x̄ ± 1√
2n

¡
2
x̄

¢
z.95 =¡

9.5413× 10−4, 1.5045× 10−3¢ .
Chapter 7
Section 7.1
7.1.1 π(1 | s = 1) = 3/16, π(2 | s = 1) = 4/16, π(3 | s = 1) = 9/16, π(1 | s = 2) =
3/14, π(2 | s = 2) = 4/7, and π(3 | s = 2) = 3/14.
7.1.4 The posterior is a Gamma(nx̄+ a, n+ β) distribution.

7.1.13 m (x1, ...xn) =
Γ(α+β)
Γ(α)Γ(β)

Γ(nx̄+α)Γ(n(1−x̄)+β)
Γ(α+β+n) for (x1, ...xn) ∈ {0, 1}n .

Section 7.2
7.2.1 E (θm |x1, ..., xn) = Γ(α+β+n)Γ(nx̄+α+m)

Γ(nx̄+α)Γ(α+β+n+m) .
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7.2.3 E
¡
1/σ2 |x1, ..., xn

¢
= (α0 + n/2) /βx, where βx is given by (7.1.8) and

the posterior mode is 1/�σ2 = (α0 + n/2− 1) /βx.
7.2.12 (a) The posterior mode is �µ = 64.053. A .95-credible interval for µ is
given by 64. 053 ±p9/19z0.975 = (62. 704, 65. 402) . This interval has length
equal to 2.698 and the margin of error is less than 1.5 marks, which is quite
small, so we conclude that the estimate is quite accurate. (b) Based on the
.95-credible interval, we can�t reject H0 : µ = 65 at the 5% level since 65 falls
inside the interval. (c) The posterior probability of the null hypothesis above is
.3885. (d) The Bayes factor in favor of H0 : µ = 65 is given by .6353.

Section 7.3
7.3.7 As we increase the Monte Carlo sample size N, the interval that con-
tains the exact value of the posterior expectation with virtual certainty becomes
shorter and shorter. But for a given sample size n for the data, the posterior
expectation will not be equal to the true value of 1/ (α+ 1), so this interval will
inevitably exclude the true value.

7.3.9 F−1Y |X(u) =
¡¡
1− x2¢u¢1/2 for 0 < u < 1. Therefore, we can generate Y

given X = x by generating U ∼ Uniform[0, 1] and putting Y = ¡¡1− x2¢U¢1/2 ,
F−1X|Y (u) =

¡
y2u

¢1/2
= yu1/2 for 0 < u < 1. Therefore, we can generate X given

Y = y by generating U ∼ Uniform[0, 1] and putting X = yU1/2. So we select
x0. Then we generate Y ∼ fY |X (· |x0) , using the above algorithm, obtaining
y1. Next we generate X ∼ fX|Y (·| y1) , using the above algorithm, obtaining x1.
Then we generate Y ∼ fY |X (· |x1) , using the above algorithm, obtaining y2,
etc. We can generate exactly from this distribution as follows: F−1Y (u) = u1/4

for 0 < u < 1, so we can generate Y ∼ FY by generating U ∼ Uniform[0, 1] and
putting y = U1/4. Then we use the above algorithm to generate X ∼ fX|Y (· | y).
Section 7.4
7.4.1 The posterior density is ∝ λn+α−1 exp [−λ (ln (Q (1 + xi)) + β)] and we
recognize this as being proportional to the Gamma(n+ α, ln (

Q
(1 + xi)) + β)

density. Hence, this is a conjugate family.

7.4.3 (a) m1 (1, 1, 3) = 59/1728,m2 (1, 1, 3) = 43/1296 and the maximum
value of the prior predictive is obtained when τ = 1. (b) π1 (a | 1, 1, 3) =
32/59, π1 (b | 1, 1, 3) = 27/59.
7.4.7 Jeffreys� prior for this model is

√
nθ−1/2 (1− θ)−1/2 . The posterior density

of θ is then proportional to θnx̄−1/2 (1− θ)n(1−x̄)−1/2 , which we recognize as the
unnormalized density of a Beta(nx̄+ 1/2, n (1− x̄) + 1/2) distribution.
7.4.11 Jeffreys� prior is given by 1/σ2.

Chapter 8
Section 8.1
8.1.1 We have that L(1 | ·) = (3/2)L(2 | ·), so by Section 6.1.1 T is a sufficient
statistic. Then, given T = 1, the conditional distributions of s are given by
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fa (1 |T = 1) = 2/3, fa (2 |T = 1) = 1/3, fa (3 |T = 1) = 0, fa (4 |T = 1) = 0,
and fb (1 |T = 1) = 2/3, fb (2 |T = 1) = 1/3, fb (3 |T = 1) = 0, fb (4 |T = 1) =
0, and we see that these are the same (i.e., independent of θ). When T = 3
the conditional distributions of s are degenerate at s = 3 and when T = 4 the
conditional distributions are degenerate at s = 4. These are also independent
of θ.

8.1.4 E (x̄+ σ0z.25) = E (x̄) + σ0z.25 = µ + σ0z.25. Since x̄ is complete, this
implies that x̄+ σ0z.25 is UMVU.

8.1.14 Suppose that c is a function such that Eθ (c (U)) = 0 for every θ.
Then Eθ (c (h(T ))) = 0 for every θ and the completeness of T implies that
Pθ ({s : c (h(T (s))) = 0}) = 1 for every θ. Now suppose u is such that c (u) 6= 0.
Then Pθ (U = u) = Pθ (h (T ) = u) = Pθ

¡
T = h−1 (u)

¢
=

Pθ
¡©
s : T (s) = h−1 (u)

ª¢
= 0 since c(h(T (s)) = c (u) for s in©

s : T (s) = h−1 (u)
ª
. This implies that U is complete.

Section 8.2
8.2.1 The ratio fb(s)/fa(s) has the following distribution when θ = a :
Pa (fb(s)/fa(s) = 3/2) = Pa ({1, 2}) = 1/2, Pa (fb(s)/fa(s) = 2) = Pa ({3}) =
1/12, and Pa (fb(s)/fa(s) = 1/5) = Pa ({4}) = 5/12.When α = .1, using (8.2.4)
and (8.2.5), we have that c0 = 3/2 and γ = ((1/10)− (1/12)) / (1/2) = 1/30.
The power of the test is Pb ({3}) + Pb ({1, 2}) /30 = 1/6 + (3/4)/30 = 23/120.
When α = .05 we have that c0 = 2 and γ = ((1/20)− 0) / (1/12) = 3/5. The
power of the test is Pb ({3}) (3/5) = (1/6) (3/5) = 1/10.
8.2.3 By (8.2.6) the optimal size .01 test is of the form (using z.99 = 2.3263)
ϕ0 (x̄) = 1 when x̄ ≥ 2.0404 and is 0 otherwise.
8.2.7 With xα (β0) denoting the αth quantile of the Gamma(nα0, β0) distrib-
ution, the UMP size α test for H0 : β ≤ β0 versus Ha : β > β0 is to reject
whenever nx̄ ≤ xα (β0) .
Section 8.3
8.3.1 The posterior distribution of θ is given by Π (θ = 1 | 2) = 2/5,Π (θ = 2 | 2)
= 3/5, so Π (θ = 2 | 2) > Π (θ = 1 | 2) . We accept H0 : θ = 2.
8.3.3 The Bayes rule is given by the posterior mean (1/τ20 + n/σ

2
0)
−1(µ0/τ20 +

nx̄/σ20) and this converges to x̄ as τ0 →∞.
8.3.6 The Bayes rule is given by the posterior mean of 1/β, namely
(nx̄+ υ0) / (nα0 + τ0 − 1) , which converges with probability 1 to(α0/β) /α0 =
β−1 as n→∞.
Section 8.4
8.4.1 The model is given by the collection of probability functionsn
θnx̄ (1− θ)n−nx̄ : θ ∈ [0, 1]

o
on the set of all sequences (x1, . . . , xn) of 0�s and

1�s. The action space is A = [0, 1] , the correct action function is A (θ) = θ,

and the loss function is L (θ, a) = (θ − a)2 . The risk function for T is given by
RT (θ) = Eθ

³
(θ − x̄)2

´
=Varθ (x̄) = θ (1− θ) /n.



12 APPENDIX: SELECTED ANSWERS

8.4.4 The model is given by the collection of probability functionsn
θnx̄ (1− θ)n−nx̄ : θ ∈ [0, 1]

o
on the set of all sequences (x1, . . . , xn) of 0�s and

1�s. The action space is A = {H0,Ha} , where H0 : θ = 1/2, the correct action
function is A (θ) = H0 when θ = 1/2, and A (θ) = Ha when θ 6= 1/2. The loss
function is L (θ, a) = 0 when θ = 1/2, a = H0 or θ 6= 1/2, a = Ha and L (θ, a) =
1 when θ = 1/2, a = Ha or θ 6= 1/2, a = H0. The test function ϕ (nx̄) = 0 when
nx̄ /∈ {0, 1, n− 1, n} and ϕ (nx̄) = 1 when nx̄ ∈ {0, 1, n− 1, n} has risk function
given by Rϕ (θ) =

¡
n
0

¢
(1− θ)n + ¡n1¢θ (1− θ)n−1 + ¡ n

n−1
¢
θn−1 (1− θ) + ¡nn¢θn.

8.4.8 Suppose we have that δ (s, ·) is degenerate at d(s) for each s. Then, clearly,
d : S → A. Now suppose we have d : S → A and deÞne δ (s,B) = 1 when
d(s) ∈ B and δ (s,B) = 0 otherwise. Then δ (s,A) = 1, and if B1, B2, . . .
are mutually disjoint subsets of A, then d(s) ∈ Bi for one i (and only one)
if and only if d(s) ∈ ∪∞j=1Bj , so δ

¡
s,∪∞j=1Bj

¢
=
P∞
j=1 δ (s,Bj) . Therefore,

δ (s, ·) is a probability measure for each s, and δ is a decision function. Now,
using the fact that δ (s, ·) is a discrete probability measure degenerate at d(s),
we have that Rδ (θ) = Eθ

¡
Eδ(s,·) (L (θ, a))

¢
= Eθ (δ (s, {d (s)}) (L (θ, d (s)))) =

Eθ (L (θ, d (s))) since δ (s, {d (s)}) = 1.

Chapter 9
Section 9.1
9.1.1 D (r) =

¡
σ20
¢−1Pn

i=1 (xi − x̄)2 = 22.761. Now D(R) ∼ χ2 (19) distribu-
tion, so the P-value is then given by P (D(R) > 22.761) = . 248, which doesn�t
indicate any evidence against the model being correct.

9.1.5 The Chi-squared statistic is equal to 3.50 and the P-value is given by
(X2 ∼ χ2 (4)) P ¡X2 ≥ 3.5¢ = 0.4779. Therefore, we have no evidence against
the Uniform model being correct.

9.1.11 We have E (a1Y1 + · · ·+ akYk) = a1µ1 + · · ·+ akµk and so E (Yi) = µi
by taking ai = 1 and aj = 0 whenever j 6= i. By Theorem 3.3.3 (b) we have
Var(a1Y1 + · · ·+ akYk) = a21Var(Y1)+···+a2k Var(Yk)+2

P
i<j aiaj Cov(Yi, Yj) =Pk

i=1

Pk
j=1 aiajσij . Putting ai = 1 and aj = 0 whenever i 6= j, we obtain

Var(Yi) = σii and this implies that Yi ∼ N (µi, σii) . Putting ai = aj = 1
and al = 0 whenever l /∈ {i, j} , we obtain Var(Yi + Yj) = σii + σjj + 2σij =
Var(Yi)+Var(Yj) + 2Cov(Yi, Yj) . This immediately implies that Cov(Yi, Yi) =
σij .

Section 9.2
9.2.1 (a) The probability of obtaining s = 2 from f1 is 1/3, which is a reason-
able value, so we have no evidence against the model {f1, f2}. (b) The prior
predictive M distribution is given by m(1) = 1/3,m(2) = 1/10,m(3) = 17/30.
So the probability of a data set occurring with probability as small or smaller
thanm(2) is 1/10, so the observation 2 is not very surprising. Accordingly, there
is no evidence of a prior-data conßict. (c) The prior predictive M now is given
by m(1) = 1/3,m(2) = 1/300,m(3) = 199/300. So the probability of a data
set occurring with probability as small or smaller than m(2) is 1/300, so the
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observation 2 is surprising. Accordingly, there is some evidence of a prior-data
conßict.

9.2.4 First, by Corollary 4.6.1 we have X̄ ∼ N(µ,σ20/n). Then we can write
X̄ as X̄ = µ + Z/

√
n, where Z ∼ N(0, σ20) is independent of µ ∼ N(µ0, τ

2
0 ).

Hence, by Theorem 4.6.1 we have that the prior predictive distribution of X̄ is
the N(µ0, τ

2
0 + σ

2
0/n) distribution.

Chapter 10
Section 10.1
10.1.1 From the deÞnitions we know that if the conditional distribution of
Y given X does not change as we change X, then X and Y are unrelated.
Then for any x1, x2 (that occur with positive probability), and y we have
P (Y = y |X = x1) = P (Y = y |X = x2) . Hence, P (X = x1, Y = y) /
P (X = x1) = P (X = x2, Y = y) /P (X = x2), so
P (X = x1, Y = y) = P (X = x2, Y = y)P (X = x1) /P (X = x2) . Summing this
over x1 gives P (Y = y) = P (X = x2, Y = y) /P (X = x2), so we must have
P (X = x2, Y = y) = P (X = x2)P (Y = y) and this implies that X and Y are
statistically independent. Now on the other hand, if X and Y are statistically
independent, then for all x and y we have P (Y = y |X = x) = P (Y = y), so
the conditional distribution of Y given X does not change as we change X and
therefore X and Y are unrelated.

10.1.3 The conditional distribution of Y given X = x does change as we change
x, so we conclude that X and Y are related.

10.1.7 If the conditional distribution of life-length given various smoking habits
changes, then we can conclude that these two variables are related. However,
since we can�t assign the value of smoking habit (perhaps different amount of
smoking), and considering there may be many other confounding variables that
should be take into account, e.g., exercise habits, eating habits, sleeping habits,
etc., we can�t conclude that this relationship is a cause-effect relationship.

10.1.13 (a) The response variable could be whether or not they have watched
the particular program. Predictor variables might be the number of members in
each household, whether or not they received the brochure, number of televisions
in the house, number of children, etc. (b) We cannot claim for a cause-effect
relationship since for many of the predictor variables it would be impossible to
assign the different values it can take.

10.1.19 U and V are related.

Section 10.2
10.2.1 The Chi-squared statistic is equal to X2

0 = 5.7143 and, with X2 ∼
χ2 (2) , the P-value equals P

¡
X2 > 5. 7143

¢
= .05743. Therefore, we don�t

have evidence against the null hypothesis of no difference in the distributions of
thunderstorms between the two years (at least at the .05 level).

10.2.5
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(a) First, note that the predictor variable, X (gender), is not random. The Chi-
squared statistic is equal to X2

0 = 10.4674 and, with X
2 ∼ χ2 (4) , the P-value

equals P
¡
X2 > 10.4674

¢
= .03325. Therefore, we have some evidence against

the null hypothesis of no relationship between hair color and gender. (b) The
appropriate bar plots are the two conditional distributions. (c) The standardized
residuals are given in the following table. They all look reasonable, so nothing
stands out as an explanation of why the model of independence doesn�t Þt.
Overall, it looks like a large sample size has detected a small difference.

Y = fair Y = red Y = medium Y = dark Y = jet black
X = m −1.07303 0.20785 1.05934 −0.63250 1.73407
X = f 1.16452 −0.22557 −1.14966 0.68642 −1.88191

10.2.16 E
³
Xl1
1 · · ·X lk

k

´
= Γ(α1+···+αk)

Γ(α1)···Γ(αk)
Γ(α1+l1)···Γ(αk+lk)

Γ(α1+···+αk+l1+···+lk) .

Section 10.3
10.3.2 Since x̄ ∈ [0, θ] ⊂ [0,∞) with probability 1, we have that x̄ is the least
squares estimate of the mean θ/2 ∈ [0,∞) .
10.3.4 (b) The least squares estimates of β1 and β2 are given by b2 = 2. 1024
and b1 = ȳ = −0.00091, so the least-squares line is given by y = −0.00091 +
2. 1024x. (e) Both graphs indicate that the normal simple linear regression
model is reasonable. (f) A .95-conÞdence interval for the intercept is (−1.0533,
1.0515) and a .95-conÞdence interval for the slope is (1. 7696, 2. 4352) . (g) The
F statistic for testing H0 : β2 = 0 is given by F = 204. 28 and, since F ∼ F (1, 9)
under H0, the P-value is given by P (F > 204. 28) = .000, so we reject the null
hypothesis of no effect between X and Y. (h) The proportion of the observed
variation in the response that is being explained by changes in the predictor is
given by the coefficient of determination R2 = .9578. (i) The prediction is given
by y = −0.00091. This is an interpolation because 0.0 is in the range of observed
X values. The standard error of this prediction is 0.46515. (j) The prediction
is given by y = 12. 613. This is an extrapolation because 6 is not in the range
of observed X values. The standard error of this prediction is 0.99763. (k) The
prediction is given by y = 42.047. This is an extrapolation because 12 is not in
the range of observed X values. The standard error of this prediction is 2.978 4.
The standard errors get larger as we move away from the observed X values.

10.3.12 Since
Pn
i=1 (xi − x̄)2 = 0, we must have (xi − x̄)2 = 0, so xi = x̄ for

every i and all the xi are equal to the same value, say x. Then we need to
estimate the conditional mean of Y at X = x based on a sample (y1, . . . , yn)
from this distribution. The model says that this conditional mean is of the form
E (Y |X = x) = β1 + β2x, where β1, β2 ∈ R1. Therefore, E (Y |X = x) can be
any value in R1 and the least squares estimate is given by the sample average
ȳ.

10.3.16
(a) Putting b =

Pn
i=1 xiyi/

Pn
i=1 x

2
i , we have that

Pn
i=1 (yi − βxi)2 =Pn

i=1 (yi − bxi)2 + (b− β)2
Pn
i=1 x

2
i since

Pn
i=1 (yi − bxi)xi =
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Pn
i=1 xiyi − b

Pn
i=1 x

2
i = 0, and this is clearly minimized, as a function of β,

by b. (b) E (B |X1 = x1, . . . ,Xn = xn) =
Pn
i=1 xi (βxi) /

Pn
i=1 x

2
i = β and

Var(B |X1 = x1, . . . ,Xn = xn) = σ2/
Pn
i=1 x

2
i . (c) E(S

2 |X1 = x1, . . . ,Xn =

xn) = (n− 1)−1
Pn
i=1E

³
(Yi −Bxi)2 |X1 = x1, . . . ,Xn = xn

´
and

E
³
(Yi −Bxi)2 |X1 = x1, . . . ,Xn = xn

´
= σ2 − σ2x2i /

Pn
i=1 x

2
i =

σ2(1− x2i /
Pn
i=1 x

2
i ), so E

¡
S2 |X1 = x1, . . . ,Xn = xn

¢
= σ2. (d) We have thatPn

i=1 y
2
i =

Pn
i=1 (yi − bxi)2 + b2

Pn
i=1 x

2
i . Here we have that

Pn
i=1 (yi − bxi)2

is the error sum of squares and b2
Pn
i=1 x

2
i is the regression sum of squares.

The coefficient of determination is then given by R2 = b2
Pn
i=1 x

2
i /
Pn
i=1 y

2
i

and this is the proportion of the total variation observed in Y (as measured byPn
i=1 y

2
i ) due to changes in X. (e) Since B is a linear combination of indepen-

dent normal variables, we have that B is normally distributed with mean given
by (part (b)) β and variance (part (b)) given by σ2/

Pn
i=1 x

2
i . (f) We have that

(B − β) /σ ¡Pn
i=1 x

2
i

¢−1/2 ∼ N(0, 1) independent of (n−1)S2/σ2 ∼ χ2 (n− 1) ,
so (B − β) /S ¡Pn

i=1 x
2
i

¢−1/2 ∼ t (n− 1) . Now there is no relationship between
X and Y if and only if β = 0 so we test H0 : β = 0 by computing the P-

value P (|T | > |b/s ¡Pn
i=1 x

2
i

¢−1/2 |), where T ∼ t (n− 1) . (g) We have that
yi = bxi+(yi − bxi) , and when the model is correct yi−bxi is a value from a dis-
tribution with mean 0 and variance (see part (b)) σ2

¡
1− x2i /

Pn
i=1 x

2
i

¢
. There-

fore, the ith standardized residual is given by (yi − bxi) /s
¡
1− x2i /

Pn
i=1 x

2
i

¢1/2
.

We can plot these in residual plots and normal probability plots to see if they
look like samples from the N(0, 1) distribution.

Section 10.4
10.4.1 (c) The F statistic for testing H0 is given by F = 2.18/2.09 = 1. 0431
and, since F ∼ F (2, 9) under H0, we have P-value P (F > 1.0431) = .39135.
Therefore, we don�t have evidence against the null hypothesis of no difference
among the conditional means of Y given X. (d) Since we didn�t Þnd any
relationship between Y and X, there is no need to calculate these conÞdence
intervals.

10.4.5 (c) The F statistic for testing H0 is given by F = 6.414/0.589 = 10. 89
and, since F ∼ F (3, 20) under H0, the P-value equals P (F > 10. 89) = .00019.
Therefore, we have strong evidence against the null hypothesis of no difference
among the conditional means of Y given the predictor.

10.4.11 If an interaction exists between the two factors, then the b response
curves are not parallel, so cannot be horizontal, i.e., there must be effect due to
both factors.

10.4.16 An individual error rate of .01 gives a family error rate of 0.0455.
10.4.17 (d) The F statistic for testing H0 : no interaction between Cheese and
Lot, is given by F = 0.151/0.110 = 1. 3727 and, since F ∼ F (2, 6) under H0,
the P-value equals P (F > 1. 3727) = .32293. Therefore, we don�t have evidence
against the null hypothesis of no interaction effect. We can then proceed to
calculate the P-value for testing H0 : no effect due to Cheese. Since F ∼ F (1, 6)
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under H0, this is given by P (F > 0.114/0.110 = 1.0364) = . 34794. Therefore,
we don�t have any evidence against the null hypothesis of no effect due to Cheese.
The P-value for testing H0 : no effect due to Lot, since F ∼ F (2, 6) under H0,
is given by P (F > 12.950/0.110 = 117.73) = .00002. Therefore, we have strong
evidence against the null hypothesis of no effect due to Lot.

Section 10.5
10.5.4 (b) The Chi-squared statistic for testing the validity of the model is
then equal to 4.66204 with P-value given by P

¡
χ2 (8) > 4.66204

¢
= . 79301.

Therefore, we have no evidence that the model is incorrect. (c) The P-value
for testing H0 : β3 = 0 is 0.638, so we don�t have any evidence against the null
hypothesis.

Chapter 11
Section 11.1
11.1.1 (a) 0. (b) 0. (f) 4/9. (k) 0.00925.
11.1.5 (a) P (τc < τ0)

.
= 0.89819. (b) Here P (τc < τ0)

.
= 0.881065. (d) Here

P (τc < τ0)
.
= 0.0183155.

Section 11.2
11.2.1 (a) P (X0 = 1) = µ1 = 0.7. (b) P (X0 = 2) = µ2 = 0.1. (d) P (X1 =
2 |X0 = 1) = p12 = 1/4
11.2.5 (a) P2(X1 = 1) = p21 = 1/2. (b) P2(X1 = 2) = p22 = 0. (g) P2(X3 =
3) = 37/100.

11.2.10 (a) This chain is irreducible. (b) The chain is aperiodic. (c) π1 = 1/4
and π2 = π3 = 1/2. (d) limn→∞ P1(Xn = 2) = π2 = 1/2. Hence, P1(X500 =
2) ≈ 1/2.
Section 11.3
11.3.1 First, choose any initial value X0. Then, given Xn = i, let Yn+1 = i+1
or i− 1 with probability 1/2 each. Let j = Yn+1 and let αij = min(1, πj/πi) =
min(1, e−(j−13)

4+(i−13)4). Then let Xn+1 = j with probability αij , otherwise
let Xn+1 = i with probability 1− αij .
Section 11.4
11.4.1 C = 12/5.
11.4.4 P (Xn = 14) = 1.2.
11.4.7 (a) {Xn} is a martingale. (b) T is a stopping time. (c) E(XT ) = 27.
(d) P (XT = 1) = 27/40.

Section 11.5
11.5.1 (a) P (Y (1)1 = 1) = 1/2. (c) P (Y

(2)
1 =

√
2) = 1/4.

11.5.5 E(B13B8) = 8.
11.5.10 (a) P (X8 > 500)

.
= 0.00004276.
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Section 11.6
11.6.1 (a) N2 ∼ Poisson(14), so P (N2 = 13)

.
= 0.1060. (b) P (N5 = 3)

.
=

4.5× 10−12. (f) P (N2 = 13, N5 = 20) .= 2.9× 10−5.
11.6.6 (a) P (N6 = 5 |N9 = 5) .= 0.1317.


