
Performance and accessibility of statistical learning algorithms for
applied data analysis

by

Cédric Beaulac

A thesis submitted in conformity with the requirements
for the degree of Doctor of Statistics

Graduate Department of Statistical Sciences
University of Toronto

© Copyright 2021 by Cédric Beaulac

Abstract
Performance and accessibility of statistical learning algorithms for applied data analysis

Cédric Beaulac
Doctor of Statistics

Graduate Department of Statistical Sciences
University of Toronto

2021

In this thesis we explore a wide range of statistical learning algorithms and evaluate their abilities to

answer clear and precise research questions given a real data set. We do so in multiple research fields; we

tackle a higher education problem, contribute to oncology research and analyse an image data set. Our

evaluation of algorithms is made with respect to their performance on these real data sets and their overall

accessibility. This creates opportunities for interesting findings and results and it serves as motivation

for theoretical and algorithmic contributions. We revisit the theoretical foundation of algorithms in

order to adapt them to tackle well-established statistical problems. We also visit every step of data

analysis; from data collection passing by algorithm design to a thorough analysis that answers research

questions. This gives us a complete perspective of the entire data analysis pipeline which allows us to

form constructive criticisms about algorithms. In this thesis we discuss all of our recent contributions.

We analyse a higher education data set and demonstrate the ability of algorithms to accurately predict

students in needs of support. Inspired by the structure of this data set, we construct a new decision

algorithm and provide a R-package to anyone interested in using this algorithm. We study the gap

between the theory and the implementation of variational autoencoders, illustrate these differences on

real data sets and provide explanations and recommendations on how to fix these issues. We design a

new survival analysis model using the variational autoencoder framework and evaluate multiple survival

analysis machine learning models on the largest randomized trial in pediatric Hodgkin Lymphoma ever

conducted. We collect and share a new data set containing high-resolution images of hand-written digits

attached to a collection of covariates. Finally, we demonstrate the potential of controllable generative

models; a new perspective on the use of labelled data sets and generative models to provide user control

over the generated variables.

ii

Acknowledgements
To begin I would like to thank my supervisor Jeffrey S. Rosenthal for the tremendous support he

offered me throughout the last few years. You were reassuring, calming, optimistic and provided me
with insightful comments on every project I worked on. I enjoyed our conversations a lot and I am going
to miss you. Merci beaucoup!

I also want to thank David Duvenaud for guiding me into the world of Machine Learning. I would not
have been able to do any of my recent work without your help. Our conversations about the differences
between Statistics and Machine Learning really sparked something and I am still thinking about those
conversations regularly. You were always pushing me to do better and I will always be grateful for that.
Thank you very much.

I want to thank every member of my thesis evaluation committee including Patrick Brown, Stanislav
Volgushev and Dehan Kong for the constructive comments and questions that inspired the last waves of
corrections included in the thesis.

Finalement, je voudrais remercier mes parents, ma fiancée et tous mes amis qui m’ont supporté tout
au long de ce processus très long et très éprouvant. Je n’y serais jamais arrivé sans votre aide. Je vous
aime. Merci.

iii

Contents

1 Introduction 1
1.1 Preface . 1
1.2 Content of the thesis . 1

1.2.1 Contributions . 2
1.2.2 Organization . 2

2 Machine learning background 4
2.1 Supervised learning . 4

2.1.1 Loss function . 5
2.1.2 Decision tree . 6
2.1.3 Random forests . 8
2.1.4 Neural networks . 10
2.1.5 Convolutional neural networks . 12

2.2 Unsupervised learning . 13
2.2.1 Principal component analysis . 14
2.2.2 Gaussian Mixture Model . 15
2.2.3 Variational autoencoders . 18

3 Analysis of an academic data set 22
3.1 Introduction . 22
3.2 Literature review . 23

3.2.1 Predicting success . 23
3.2.2 Identifying important predictors . 24

3.3 Methodology . 25
3.3.1 Data . 25
3.3.2 Techniques . 26
3.3.3 Variable Importance in Random Forests . 26
3.3.4 Algorithms . 27

3.4 Results . 28
3.4.1 First research question : Predicting program completion 28
3.4.2 Second research question : Predicting the major 30

3.5 Conclusion . 31

iv

4 BEST : A new decision tree algorithm that handles missing values 34
4.1 Introduction . 34
4.2 Missing values . 35
4.3 Branch-Exclusive Splits Trees (BEST) . 36

4.3.1 Motivating Example . 36
4.3.2 Intuition . 37
4.3.3 Algorithm implementation . 38
4.3.4 Theoretical justification . 39

4.4 Related work . 41
4.5 Experiments : Simulated data sets . 42

4.5.1 MAR : Missingness depends on observed predictors 43
4.5.2 MNAR : Missingness depends on missing values . 44
4.5.3 MAR : Missingness depends on the response . 44
4.5.4 Random forests and variable importance . 47
4.5.5 Simulations: takeaways and limitations . 48

4.6 Experiments : grades data set . 50
4.6.1 Predicting program completion . 50
4.6.2 Predicting the major . 51
4.6.3 Improved interpretability . 51
4.6.4 Real-world data set experiment takeaways . 54

4.7 Conclusion . 54

5 Variational Autoencoders: theory and implementations 57
5.1 The simple variational autoencoder . 57

5.1.1 Maximization of the ELBO . 58
5.1.2 Practical uses . 59

5.2 Visualization of the simple VAE . 61
5.3 Algorithmic solutions . 63

5.3.1 Tradeoff between reconstruction and regularization 63
5.3.2 Reconstruction term . 64
5.3.3 Modification to the ancestral sampling procedure 65
5.3.4 Effect on the model optimized . 66

5.4 Issues with algorithmic solution . 68
5.4.1 Application issues . 68
5.4.2 Theoretical issues . 68

5.5 Future work . 72
5.6 Related literature . 73
5.7 Conclusion . 74

6 An evaluation of machine learning techniques in survival analysis 75
6.1 Introduction . 75
6.2 Data set . 76
6.3 Survival Analysis models . 76

6.3.1 Benchmark : Cox Proportional Hazard Model . 76

v

6.3.2 Conventional statistical learning models . 77
6.3.3 Newly established models . 78

6.4 Survival Analysis Variational AutoEncoder . 79
6.4.1 Model distributions . 80
6.4.2 Fitting the parameters . 81
6.4.3 Prediction and decision-making . 82

6.5 Data analysis . 84
6.5.1 Evaluation metrics . 84
6.5.2 Comparative results . 85
6.5.3 Specifics about SAVAE . 87

6.6 Takeaways and Recommendations . 87
6.7 Conclusion . 88

7 HWD+ data set: a new computer vision data set 90
7.1 Introduction . 90
7.2 Related work . 91
7.3 Data set . 92

7.3.1 Data gathering . 93
7.3.2 Data processing . 94

7.4 Computer Vision Algorithms . 95
7.4.1 Convolutional Neural Networks for supervised learning 95
7.4.2 Variational AutoEncoders for semi-supervised learning 95

7.5 Experiments . 97
7.5.1 Supervised learning . 97
7.5.2 Semi-supervised learning . 101

7.6 Conclusion . 104

8 Conclusion 105
8.1 Summary . 105
8.2 Discussion and opinions . 106
8.3 Future projects . 107

Bibliography 107

vi

Chapter 1

Introduction

1.1 Preface
When I was a kid, I was fascinated by Artificial Intelligence (AI). At that point in time I was thinking
about independent-minded robots, self-driving cars and realistic non-playable characters in video games.
Back then it seemed unrealistic but we are currently allowed to dream about these things; these things
are now within arm’s reach. The recent evolution of automated decision-making is grounded in Machine
Learning (ML), an algorithmic approach to data analysis.

As someone who studied statistics for years, I was intrigued to study what made those fields different.
If I was to define statistics as a probabilistic approach to data analysis, we could see a difference on sight.
However, this oversimplifies the difference too much; machine learning is built on probability results and
statistics relies on algorithms in many cases.

Both fields are trying to accomplish similar goals and, from experience, it feels like the main difference
are the different research communities. Being a member of both research communities felt important
to me and producing research that would be recognized as contributions for both communities was
something I tried to achieves throughout my Ph.D.

1.2 Content of the thesis
In this thesis we approach ML with an applied data analysis perspective. We discuss popular ML
models, the noticeable differences with commonly used statistical techniques and discuss performances
for various tasks on simulated and real data sets.

Statistical modeling: The two cultures [21] was very influential for me and this thesis is an attempt at
better understanding how to utilize both statistics models and machine learning models to solve real data
problems. Uniting these two research communities is an important step and one we wish to accomplish.
To do so, it is important that we understand the strengths and weaknesses of both of these different
approaches.

The common theme in all of our research projects is the evaluation of modern machine learning
model contributions to the current state of data analysis. This evaluation is done with respect to

1

Chapter 1. Introduction 2

the performances and the accessibility of the visited algorithms. When evaluating the accessibility of
algorithms, we discuss the availability of implementations, packages and libraries, the computing power
needed to use those and the data assumption under which they were built. When evaluating performances
we not only consider measures of accuracy and error but we also discuss generalization abilities and the
stability of algorithms.

To submerge ourselves further in machine learning, we explored in the entire machine learning
pipeline. We delved into data gathering and processing, algorithm design, data analysis, surveys and
more.

1.2.1 Contributions

The following is a list of all novel contributions sorted by order of appearance in the thesis.

• An analysis of a data set provided by the University of Toronto using Random Forests; the analysis
focus on the prediction of program and program completion and the important predictors.

• A novel Decision Tree algorithm, BESTree (R-package) that allows researchers to guide the par-
titioning process. We illustrated how to utilize our novel algorithm to analyze data with missing
values.

• An analysis of the current Variational AutoEncoder (VAE) implementations; we discuss the differ-
ences between the proposed VAE model and successful implementations and support our arguments
with experiments on the MNIST data set.

• A novel VAE model called Survival Analysis VAE (SAVAE); this model was designed to adapt
VAEs for survival analysis.

• An extensive survey of survival analysis machine learning techniques; the survey was done on the
largest randomized trial in pediatric Hodgkin Lymphoma ever conducted.

• A new computer vision data set; inspired by MNIST, this data set contains 13580 hand written digit
images in much higher resolution (500 × 500 pixels). The data also contains writer identification
and various writer characteristics.

• An analysis of this brand new data set; we explore a wide range of supervised, unsupervised and
semi-supervised tasks.

• A demonstration of controllable generative algorithms that allows users to steer the generative
procedure using the data set we propose; we train a generative model on our new proposed data
set and are able to generate images that mimics a writing style.

1.2.2 Organization

The next chapter is dedicated to briefly introduce a wide range of ML models. In Chapter 3 we will
introduce our first research article; a data analysis application of random forest. In Chapter 4 we will
introduce a novel decision tree algorithm created and tested with traditional ML methods which lead
to our second publication. In Chapter 5 we discuss some of the problems with the simple VAE model

Chapter 1. Introduction 3

initially proposed. Then, in Chapter 6, we introduce a survey of the performances of ML techniques
in a traditional statistical field: survival analysis. This led to our third submission. Next, Chapter 7
discusses our most recent project which introduces our newly created data set and our experiments with
computer vision algorithms. Finally, Chapter 8 concludes this thesis with a short discussion.

Chapter 2

Machine learning background

In this chapter we introduce multiple machine learning (ML) algorithms and some notation used through-
out this thesis. This chapter is meant as a brief overview rather than than a thorough definition. Readers
comfortable with ML terminologies may skip this chapter.

Most of the theory explained in this chapter and the notation come from both Shalev-Shwartz and
Ben-David Understanding Machine Learning: From Theory to Algorithms [133] and Hastie et al. The
Elements of Statistical Learning [61]. This is the theory upon which we have built most of this thesis.

2.1 Supervised learning

In supervised learning we are interested in the relationship between a set of variables called predictors,
inputs or explanatory variables and another set of variables called responses, outputs or explained
variables. The problem usually consists of learning ways to predict the responses when given predictors.

We identify the set of predictor variable as x, say of size m, and the set of response variable as y,
say of size t and a full observation as z = {x,y} of size m + t. Each of these variables belong to their
own respective spaces: x belong to the predictor space X = X1 × ... × Xm, the response variables in
Y = Y1 × ...× Yt and z belong to X × Y = Z.

Additionally, it is common to receive a data set S = {xi,yi : i ∈ (1, ..., n)} containing n different
observations of the predictors and the responses. We are tasked to use this data set S, the training
set, to produce a prediction function h that takes new predictors x as input and returns a prediction
hS(x) = ŷ. Notice that we have indexed the prediction function h by the data set S, since different
training sets lead to different prediction functions. To keep the notation clean we will exclude the index
S when it is not necessary.

A classic assumption in supervised learning is that the training set S is a sample of observations that
are independently distributed according to the same unknown and true distribution D, i.e. Z = X×Y ∼
D. Thus, the problem becomes one of approximating the true distribution D as best as possible, more
precisely in supervised learning we want to approximate D(Y|X).

4

Chapter 2. Machine learning background 5

2.1.1 Loss function

If the response y is a categorical variable we talk about classification problems and if the response is
continuous we talk about regression. To introduce some theoretical concepts, let us begin by discussing
the classification problem given a data set with a single response y. The true loss of a classifier h is
defined as

LD(h) = PD[h(x) ̸= y], (2.1)

which is the probability under the true data generating distribution D that the classifier h misclassifies an
observation x. Thus we can claim that we have achieved our goal of estimating the true data distribution
D if the loss is zero. Since the data generating distribution D is unknown, we cannot compute the true
loss and the empirical loss computed with the data set S is typically used as an estimator

LS(h) =
|{i ∈ [n] : h(xi) ̸= yi}|

n
, (2.2)

which is the proportion of misclassified observations in the training set S. To establish a prediction
function we first define a large set of possible classifiers H, the hypothesis class, and then we try to select
h ∈ H that minimizes the empirical loss function.

To extend the above definition to a wider range of learning tasks we need to generalize this definition.
For instance, the true loss of Equation 2.1 would not be informative if y was continuous. To generalize
this concept, we define loss functions l : H×Z → R+ and the loss of the classifier as

LD(h) = ED[l(h, z)]. (2.3)

Consequently, we define the empirical loss as

LS(h) =

∑n
i=1 l(h, zi)

n
. (2.4)

To respect the intuition of the first definition of Equation 2.1, we usually create loss functions such that
a big loss is associated with a poor fit and a small loss with a good fit. For instance, if y is a categorical
a simple loss function is the 0-1 loss

lS(h) = 1(h(xi) = yi). (2.5)

As a matter of fact, under this loss function both the true loss and empirical loss are back to their
original forms expressed in Equations 2.1 and 2.2. With this generalized definition of loss we can create
loss function that works well for continuous response such as the squared error (SE) loss

lS(h) = (h(xi)− yi)
2, (2.6)

and in this case, the empirical loss is the mean squared error (MSE), a very well-known loss

LS(h) =

∑n
i=1(h(xi)− yi)

2

n
. (2.7)

Chapter 2. Machine learning background 6

2.1.2 Decision tree

A classifier h is built to emit a class prediction for any new data point x that belongs in the predictor
space X = X1 × ... × Xm. Assuming the response variable can take k different values, the classifier
divides the predictor space X into k disjoint regions K1, ...Kk, one per class, such that ∪k

q=1Kq = X ,
i.e. h(x) =

∑k
q=1 q1{x ∈ Kq}.

A classification tree [22], or Decision Tree (DT), is an algorithm that directly forms regions in
the predictor space by recursively dividing it. In this section we will quickly introduce one of the
simplest form of decision trees, a binary classification tree has defined by Breiman et al. [22]. A binary
classification tree is obtained through a sequence of recursive binary partitioning of the predictor space.
Beginning with the entire predictor space, the algorithm selects the variable to split upon and the data
partition that minimize some impurity measure. Then the resulting two regions are each split into two
more regions until some stopping rule is applied. The classifier will label each region with one of the k

possible classes. It is possible to label multiple regions with the same class. For instance, if R1 and R2

are both assigned the label l then Kl = R1 ∪ R2. Since decision trees can be graphically represented
with nodes and edges we use the word node interchangeably with regions (R) of the predictor space.

It is said that the four elements needed for the binary tree growing procedure are:

1. A set of binary questions.

2. A goodness of split criterion (usually resulting in minimizing some impurity measure)

3. A stop-splitting rule

4. A terminal node (leaf) labelling rule

There exist multiple ways to establish these four ingredients but in order to keep this introduction
succinct we only introduce a few simple ways to define them.

A simple labelling process (4) goes as follows; let prq = 1
nr

∑
xi∈Rr

1{yi = q}, the proportion of the
class q in the region r where nr is the number of observations contained in region r. Then, the label of
the region r is the majority class in that region, i.e. if x ∈ Rr, hS(x) = argmaxq(prq). The impurity
measure function for region r is defined as Qr (2) and can take many forms such as the Gini index or
the deviance

Gini index : Qr =

k∑
q=1

prq(1− prq)

Deviance : Qr = −
k∑

q=1

prq log(prq).

(2.8)

When splitting a region Rp into two new regions Rr and Rt the search algorithm computes the total
impurity of the new regions ; nrQr +ntQt and picks the split variable xj and the split s that minimizes
that total impurity. We establish the set of binary questions (1) differently depending on the nature of
the predictors. If the predictor xj is continuous, the possible splits are of the form xj ≤ s and xj > s

Chapter 2. Machine learning background 7

which usually results in np − 1 possible splits. For a categorical predictor having c possible values, we
usually consider all of the 2c−1 − 1 possible partitions.

The partitioning continues until a stopping rule is applied (3). In some cases, the algorithm stops
whenever every terminal node of the tree contains less than β observations, in other cases it stops when
all observations within a region belong to the same class. To prevent overfitting, a deep tree is built
and then the tree is pruned. Tree-pruning is a cost-complexity procedure that relies on considering that
each terminal node is associated with a cost α. The procedure begins by collapsing leaves that produce
the smallest increase in total impurity and this technique will collapse leaves as long as the increase in
impurity is less than the cost α of the additional leaf. Rigorously, the tree pruning procedure consists
of minimizing the cost complexity criterion defined as

Cα =

|R|∑
r=1

nrQr + α|R|, (2.9)

where |R| is the number of regions, i.e. the number of leaves in the tree. As α increases, a unique
nested set of trees is generated as solutions of Equation 2.9. The parameter α can be determined by
cross-validation or with the use of a validation set.

To summarize, here is a pseudo-code of a simple DT as described above used as a visual support.

Algorithm 1 : DT(S,β)
INPUT: training set S and an hyper-parameter β

Start with the entire data set S as the node r

1 if All labels are the same :
Assign the label to the node and exit.

if nr < β :
Assign the majority label to the node and exit.

else :
for j in all predictors:

for s in all possible splits :
Compute the total impurity measure for the two resulting regions.

Select the variable j and the split s with minimum total impurity measure.
Split the node into two child nodes.
Repeat step 1 on the two children nodes.

OUTPUT: A fitted binary decision tree

Decision trees can also be extended for continuous responses. In this case we talk about regression
trees. The labelling rule could be the output mean within the terminal node and the impurity measure
could be the MSE for instance.

To conclude this section, let us discuss why and how DTs are part of our research. When reading
statistical learning books [61, 15], the decision tree was the first model that felt drastically different. It is
drastically different from all statistical techniques we have been in contact with before. The classification
problem is framed as an optimization problem and the solution is strictly algorithmic. It assumes no

Chapter 2. Machine learning background 8

model nor particular structure. Nonetheless, it produces a highly interpretable prediction function
which is important in the eyes of many applied data scientists and is usually a characteristic attributed
to linear statistical models. For these reasons, we spent some time on decision trees; we have explored
their strengths and weaknesses in our first few projects. We used decision trees for a wide range of
applied problems. We also came up with a new decision algorithm which will be discussed in Chapter
4. However, decision trees greatly suffer from instability which we discuss next.

2.1.3 Random forests

Random forests and bagged trees proved to be a great improvement, having higher accuracy and lower
variance, over decision trees due to the instability of decision trees. Thus it feels natural to briefly
introduce the concept of algorithm stability.

Before coming up with the concept of bagging (Boostrap aggregating) and random forests, Breiman
studied exhaustively instability in a 1996 publication [19]. A heuristic definition of instability is that a
small change in the training set S can make a big change in the resulting prediction function hS . Thus,
the more unstable the procedure is, the noisier the empirical loss is and consequently it is harder to
select the best prediction function h, the one with the minimal true loss, within the hypothesis class H.

A more rigorous definition of algorithm stability is established by Shalev-Shwartz and Ben-David
[133]. Given a training set S and an additional observation z∗ = (x∗,y∗) we can define a sequence of
training sets S(i) where the ith observation is replaced by z∗. This allows us to precisely define what
a small change in the training set is. In this case it means using S(i) instead of S when training the
prediction function h. To quantify the effect of the change in the training on the prediction function we
use a loss function l and compute l(h

(i)
S , zi)− l(hS , zi) ≥ 0. The smaller this value is the more stable the

procedure is. Shalev-Shwartz and Ben-David [133] later prove how stable algorithms do not overfit. In
other words, stable models generalize well to new observations.

Decision trees were empirically shown to be unstable by Breiman [19]. Bagged tree [18] was first
proposed as a solution to this problem and later Random forest [20] came as an updated version of
bagged tree. We consider a random forest to be any ensemble of tree prediction functions but the name
was first coined to represent Breiman’s implementation introduced in 2001 [20]. Let us now introduce
these models.

Bagging relies on the fact that aggregating the predictions of a large ensemble of prediction functions
is more stable and accurate than those individual prediction functions themselves. Full proof is included
in [18]. A problem is that we rarely have multiple training set S to allow us to build multiple classifiers hS .
The solution proposed by Breiman is to take T bootstrap samples S∗ of the training S, say S∗

1 , S
∗
2 , ..., S

∗
T

and fit a decision tree using each of these samples hS∗
1
,, hS∗

T
. For prediction we aggregate the multiple

tree by taking the average of the predicted value if y is continuous. If y is categorical, then each tree
predict a class for y and each of these predicted classes are considered as a vote towards the final
prediction where the majority wins. This technique is known as bagged trees and is the simplest form
of Random Forests.

Here is a pseudo-code on how to form bagged trees:

Chapter 2. Machine learning background 9

Algorithm 2 : Bagged Trees(S,β,T)
INPUT: training set S, hyper-parameter β and the
number of trees in the ensemble T .
1 Take T bootstrap samples of S resulting in S∗

1 , ..., S
∗
T .

2 for all t in (1,...,T):
Fit DT : ht = DT(St,β)

OUTPUT: An ensemble of DT prediction functions.

To further improve the stability of the ensemble of trees, Breiman proposed a technique to ensure that
the produced trees are as uncorrelated as possible [20], this leads to the most popular implementations of
Random Forest (RF). It is shown [20] that having individual classifiers that are as uncorrelated as possible
further increase the stability of the ensemble. Breiman defines the correlation between classifiers has a
function of the random vectors leading to the classifiers. For bagged trees, those random vector are the
random bootstrap samples. However when building a RF, these random vectors are more complicated.
Once again we take T bootstrap samples S∗ of the training S however ,during the partitioning process
instead of looking for the best split among all predictors, a subset of predictors is randomly sampled.
This random sample is also part of the random vector leading to the classifier, and thus the extra layer of
randomness in RF directly leads to a forest of trees less correlated compared to the previously described
bagged trees.

Beside being used as a classification or regression algorithms, RFs became quite popular for ex-
ploratory data analysis where they are used to compute the variable importance. A variable importance
analysis aims at understanding the effect of individual predictors on the classifier outcome. More pre-
cisely, a variable importance analysis orders the list of predictors by how much they individually affect
the random forest. A predictor with a great effect is considered an important predictor. A RF provides
multiple variable importance computations.

The permutation decrease importance was introduced by Breiman along with RFs [20]. Intuitively,
if a predictor has a significant effect on the response, perturbing this predictor during prediction should
result in a lower accuracy. One way to disrupt the predictor values is by permutation. The permutation
decrease importance is a procedure that computes the prediction accuracy on the test set first. Then,
it permutes the test set observations of one predictor, say xj , run this permuted data through the
forest and compute the accuracy again. The process is repeated for all predictors and the prediction
accuracy decreases are compared. The larger the decrease in accuracy the more important the variable
is considered. Through the years new variable importance techniques were established and we discuss
them in later chapters.

Variable importances is a novelty for me as a statistician as it was motivated by black-box models.
Neither the p-value nor the size of the coefficient itself is a good candidate to represent to importance
of a predictor. For instance, a predictor could be significant according to its p-value but be attached
to a coefficient small in comparison to the scale of the responses variable to a point that the predictor
has close to no effect on the response. The opposite case where the coefficient is large but considered
non-statistically significant is also problematic when we try to asses the impact of the predictor on the

Chapter 2. Machine learning background 10

response. The variable importance analysis built along RFs puts the quality of the predictions at the
center of the evaluation of a predictor’s importance and has been used successfully in the literature [139].

However, this does not mean that variable importance computations are exclusive to RFs. As a
matter of fact, the permutation decrease importance is model agnostic and there exist R packages and
Python libraries that allow users to compute the permutation decrease importance for a wide range of
models. Similarly, some importance techniques have been designed for linear models, for instance the
dominance analysis [23] compares the contribution to the coefficient of determination, R2, of multiple
predictors. Nevertheless, the decrease importance is a significant contribution has it defines a way to
explore the mechanism of black-box models such as RFs.

RFs were at the centre of our very first research project and they were used notably to perform
a variable importance analysis on real data. Regarding our study of ML, bagging is a great example
of statistically motivated ideas implemented on a unstable algorithmic approach, DTs. The trade-off
between the high interpretability but instability of DTs and their more stable but non-interpretable RF
counterpart was influential for our understanding on how some ML models are established; instability
was empirically motivated but the solution was theoretically established.

2.1.4 Neural networks

Neural Networks (NNs) are central to the increase in popularity of ML in the recent years. NNs are
flexible parametric functions composed of parametric linear and fixed non-linear transformations. They
are rapidly gaining popularity as they are flexible and in their limit can become universal function
estimators [36, 133]. They are also quite popular since they are relatively easy to fit since the introduction
of back propagation [127]; an efficient way to compute and store the gradients of a NN function with
respect to its parameters using the chain rule of derivatives. Multiple Python libraries now offer tools
to define and fit NNs. They can be used as prediction functions themselves or as building blocks in a
more complex model. Let us now use a simple example to introduce NNs; to proceed we will begin with
a simple fully connected single-layer NN, however, we also explain a few ways to generalize this simple
model.

Figure 2.1 depicts a simple fully connected NN with one hidden layer (z). In this instance, all inputs
are linearly combined before going through a non-linear function σ called the activation function.

z1 = σ

(

m∑
j=1

β1,jxj) + b1

 . (2.10)

This process is done multiple time in parallel to allow for many different linear combinations to be
learned, hence the multiple nodes z. Fixing x0 = 1 allows to represent in a compact manner the
transformation that occurs in the first layer

z = σ (B1x) , (2.11)

where σ is applied element-wise and B is a matrix of parameters of size q × (m+ 1).

Chapter 2. Machine learning background 11

x1

x2

x3

xm

b1

z1

z2

z3

zq

b2

y

Figure 2.1: A simple NN with input of size m, 1 hidden layer of size q and a output layer of size 1.

In our simple model illustrated in Figure 2.1 the output y is of dimensions 1. Assuming a simple
two-class classification problem, the logit activation function is used to serve as an estimator for p, the
probability that y = 1 for instance,

y = logit (B2σ (B1x)) . (2.12)

Usually, the number of hidden layers and the number of nodes in each of these layers are to be determined
by the users. The number of output is usually determined by the problem itself. This is only a simple
example so that we can visualize how NNs work, however there exist multiple way to adapt them to
specific problems and there exist an extensive literature that covers these topics. For instance, one way
to extend this simple model is to add hidden layers and sequentially repeat this process. This create a
much more complex function and one that can grasp high order of interaction between predictors. They
can also be generalized in other ways, for example CNNs [94] which does not rely on fully connected
layers, we will see why in the next section.

Fitting the weight matrices B is done using back propagation [127]. Given a differentiable loss
function and a differentiable activation functions σ we can compute the gradient of the loss function
with respect to a single weight. Back-propagation is an efficient way to compute all of the needed
gradients and since many of those gradients share some information in the chain derivative steps they
must be all efficiently stored.

Using back propagation, NN’s parameters can be estimated in any gradient based optimization
problem. This is one of the reason NNs are so popular; they can be included as a building block in
any model that is optimized using gradient-based techniques whereas DTs could not for instance. Since
many ML techniques now rely on gradient-based optimizer, NNs became the go-to function estimator

Chapter 2. Machine learning background 12

in ML, replacing the linear combination in many models as NNs are more flexible and expressive than
linear function while still being relatively easy to fit.

The expressive power of NNs has been studied extensively. Shalev-Shwartz and Ben-David [133]
demonstrated that NNs are universal approximators for Boolean functions. That is rigorously, for every
Lipschitz function f : [−1, 1]n → [−1, 1] it is possible to construct a network such that for every input x

the network outputs a number in f(x) + /− ε. More recently, Csáji [36] claims in his thesis :

The universal approximation theorem claims that the standard multilayer feed-forward net-
works with a single hidden layer that contains finite number of hidden neurons, and with
arbitrary activation function are universal approximators in C(Rm).

In the current thesis, NNs are central to any computer vision algorithms we studied, more precisely,
CNNs which we introduce next. They are not only popular because of their flexibility and overall
performances but also because of the large amount of support available. However there exist many
interesting and important unanswered questions regarding NNs: how do you select the number of hidden
layers or nodes in each layer for instance. These questions are slightly discussed in our research and
are currently investigated in many research papers, however there are no established solutions yet.
Nonetheless NNs are frequently used due to their empirical prowess.

2.1.5 Convolutional neural networks

In the computer vision field, a special NN structure has been widely used; Convolutional Neural Network
(CNN) [94]. A CNN is well suited for image analysis as its architecture itself is designed to incorporate
spatial correlation and some degree of shifts and scale invariance. LeCun et al. [95] identify three
structural aspects of CNNs that ensure those properties: 1) local receptive fields, 2) shared weights and
3) spatial subsampling.

In a fully connected NN (Section 2.1.4), every input is passed through every node of the next layer.
In the case of image analysis, this results in every pixel of an image being inputs of every function in
the first layers. For one, this forces the NN to have a large number of parameters. It also neglects the
correlation between nearby pixels; it considers pixels far from another potentially as correlated as the
ones nearby. In CNNs this is usually taken care of by convolution layers. For these layers, only a small
number of nearby pixels are passed as inputs to the next layer as illustrated in Figure 2.2 below.

These layers are said to have sparse connectivity which both reduces the memory requirements and
increases the statistical efficiency of the model. It also means faster prediction as fewer operations are
needed to emit a prediction. These layers also contribute towards parameter sharing in this model.

Another typical step in a CNN is pooling. A pooling function outputs a summary statistics of its
inputs. For instance, the max pooling operation outputs the maximum of all the inputs. The mean input
is another example of pooling function. These pooling stages are useful at making the representation
invariant to small translation within the image.

Chapter 2. Machine learning background 13

Figure 2.2: A visual representation of a convolutional layer included Deep Learning [55]

Usually a CNN contains multiple convolution layers, multiple pooling stages and fully connected
layers. A detailed formulation of CNNs is available on Chapter 9 of Deep Learning by Goodfellow et al.
[55].

We used CNNs in our latest research project presented in Chapter 7 as this is a computer vision
project. CNNs are often used in this thesis as an example of special NNs; they’ve been built in order
to tackle problems that are specific to computer vision and their performances are a proof that this
algorithm design approach can be successful.

2.2 Unsupervised learning

In supervised learning we divide the variables into two groups; predictors and responses. Our goal is
clear, establish or estimate the relationship between the predictors and responses, commonly formulated
as predicting the responses using the predictors. However, which variables are responses and which one
are predictors is usually chosen by the researcher, hence the supervision aspect. Under the assumption
that X×Y ∼ D, the supervised problem is to approximate D(Y|X).

In unsupervised learning, no specific relationship between the variables is defined; variables are not
labelled as predictor or response. Thus, we are trying to understand structures and patterns in the
variables themselves. In other words, under the assumption that there exist a true data generating
distribution D, such that X ∼ D this time we are trying to estimate D(X) instead of a conditional
distribution.

For example, clustering is a popular unsupervised procedure. Clustering is a statistical procedure
that regroups data points that are alike. Another unsupervised task is compression where the task is to

Chapter 2. Machine learning background 14

find a lower-dimension representation of complex observations. In both of these tasks, all of the variables
are equally considered and no label are assigned to any of the variables.

Another big difference between supervised and unsupervised learning is how the success of the model
can be assessed. With supervised learning it is much easier to measure the success of an algorithm. The
success being directly estimated by computing the averaged loss on unobserved data points, the test set.
However, in the context of unsupervised learning there is usually no such obvious measure of success
and this situation has led to multiple proposed methods where effectiveness is more a matter of opinion
rather than rigorous computations.

2.2.1 Principal component analysis

Principal component analysis (PCA) is a common dimensionality reduction procedure in statistics. Even
though we do not use it directly in any projects in this thesis we compare algorithms to PCA frequently
and a brief introduction is warranted.

Suppose we have n observations of a continuous variable x, S = {xi : i ∈ (1, ..., n)} of m dimensions.
The purpose of PCA is to reduce the dimensionality of the data set by projecting data points to a much
lower-dimensional space say d where d << m. In its simplest form the projection is done via a linear
combination. Suppose zi is the d-dimensional representation of xi. The goal is to project S on a space
that best captures the variability within the original space, thus we want to maximize the variance of
the lower-dimensional representation.

To do so, let us define U as a m× d matrix called the projection matrix or compression matrix such
that

z = UTx.

The variance of the projected data becomes UTCU where C is the covariance matrix of the original data

C =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T .

To preserve rich information in the compressed space, we try to maximize the variance of the projected
data, UTCU . If we do so, we see the need for constrained on U and thus we set every vectors to be of
length 1, i.e utu = 1 for every vector in U . In other words, theses vectors represent directions in the
higher-dimensional space. To enforce this constraint we introduce a Lagrange multiplier which leads to
the following maximization problem

UTCU + λ(1− UTU).

Setting the derivative with respect to U equal to zero leads to

CU = λU,

Chapter 2. Machine learning background 15

which says that U must be a matrix of eigenvectors of C. Finally, by left-multiplying by UT we have

UTCU = λ

and so the variance will be maximized if we set U as the collection of the eigenvectors of the data
covariance matrix C associated with the d largest eigenvalues of C. Scaling can be an issue when using
PCA and to circumvent this problem it is recommended to normalize S.

Algorithm 3 : PCA(S,d)
INPUT: A training set S and dimension of the lower representation d

Start with the entire data set S

1 Compute the covariance matrix C of the data set S

2 Compute the matrix of eigenvectors U and the associated vector of eigenvalues λ

3 Extract the d eigenvectors Ud associated with d largest eigenvalues λd

4 Return Ud the projection matrix.
OUTPUT: Projection matrix Ud.

2.2.2 Gaussian Mixture Model

Let us introduce the Gaussian Mixture Model. Moving from a simple Gaussian to a mixture of Gaussian
allows for more complex observed-data distributions. The mixture component adds an extra layer
of flexibility which allows observations to belong to one of many Normal distributions, thus enabling
Gaussian models to account for multi-modal distributions among other things.

The simplest way to define such model is to consider z to be a latent discrete variable and x to be the
observed continuous variable. From now on, we will refer to z as latent variables and we define latent
variables as unobserved variables that have an effect on the observed variables. We will refer to x as the
set of observed variable, usually the collected data.

For the Gaussian Mixture Model, z represents the component, i.e. if zi = k it means that xi is
distributed according to N(µk, σk). For every possible component k we have a distinct mean (µ) and
standard deviation (σ), i.e. the parameters of the distribution of x depends on the latent component
such that

p(x|z = k) = N(µk, σk).

As we can see, the distribution for x is now a lot more complicated as we are only able to pin down the
conditional distribution given z

p(x) =
∑
z

p(x, z)

=

K∑
j=1

p(x|z = j)p(z = j),

(2.13)

assuming we have K components. Since each z is associated with a different p(x|z) we can see in Equation
2.13 why p(x) is more expressive in this form. On the other hand, it is much harder to estimate the

Chapter 2. Machine learning background 16

parameters. If we attempt to compute the likelihood of an observed data set, applying the logarithm
function is not enough to make the likelihood easily differentiable

p(x) =

n∏
i=1

p(xi)

=

n∏
i=1

K∑
j=1

p(xi|zi = j)p(zi = j) (2.14)

⇒ ln p(x) =

n∑
i=1

ln

K∑
j=1

p(xi|zi = j)p(zi = j).

Consequently, simple maximum likelihood strategies can not be employed here. The proposed solution
to fit this model is the Expectation-Maximization (EM) algorithm. We will explain how this technique
maximizes the likelihood function later. There exist intuitive formulations of the EM algorithm for
GMMs but we introduce the Evidence Lower Bound - Kullback-Leibler (ELBO-KL) decomposition of
the likelihood first. This is a bit of extra work, but it will prove useful when we introduce VAEs later.

The ELBO-KL decomposition

Let us demonstrate the ELBO-KL decomposition; a decomposition of the log likelihood of the observed
variable in latent variable models. Notice that these equations hold for any distribution q(z)

ln p(x) = ln (p(x, z)/p(z|x))

= ln (p(x, z))− ln (p(z|x))

= ln (p(x, z))− ln (p(z|x)) + ln q(z)− ln q(z)

= ln

(
p(x, z)

q(z)

)
− ln

(
p(z|x)
q(z)

)
(2.15)

⇒ Eq(z)[ln p(x|θ)] = Eq(z)

[
ln

(
p(x, z)

q(z)

)]
−Eq(z)

[
ln

(
p(z|x)
q(z)

)]
⇒ ln p(x|θ) = Eq(z)

[
ln

(
p(x|z)p(z)

q(z)

)]
−Eq(z)

[
ln

(
p(z|x)
q(z)

)]
= L(q, p) +KL(q||p).

Notice that since the KL divergence is greater or equal than 0, then L(q, p) is a lower bound for the
likelihood. It is called the evidence lower bound (ELBO) or the variational lower bound. Multiple
techniques for inference on graphical models are based upon the maximisation of this lower bound.

The Jensen’s inequality is another way to demonstrate why the ELBO is a lower bound

p(x) =

∫
p(x|z)p(z)dz

=

∫
p(x|z)p(z)q(z)

q(z)
dz

=

∫
p(x|z)p(z)

q(z)
q(z)dz (2.16)

Chapter 2. Machine learning background 17

⇒ ln p(x) ≥
∫

ln
p(x|z)p(z)

q(z)
q(z)dz

= Eq(z)

[
ln

(
p(x|z)p(z)

q(z)

)]
.

The EM algorithm : Maximization of the variational lower bound for tractable posterior

The Expectation-Maximization algorithm is an iterative procedure that slowly increases the value of
the variational lower bound with two distinct steps. To begin, we will explain the key ideas and how
the algorithm intends to maximize the likelihood and then we will see how this procedure leads to a
maximization of the variational lower bound.

We’ve already discussed the issue of maximizing the likelihood of the observed data set in models
with latent variables. Remember that

ln pθ(x) =

n∑
i=1

ln

K∑
j=1

pθ(xi|zi = j)pθ(zi = j),

and thus maximizing the likelihood is analytically impossible. This model contains (k− 1) + 2k param-
eters. The k− 1 parameters for the categorical distribution of z, the k means µj and the k variances σ2

j

that correspond to the k normal components. From now on, we refer to all of these parameters as θ.

Since we only observe x, the only information we have about z is through the posterior distribution
pθ(z|x). Therefore we cannot directly use the complete-data log likelihood ln pθ(x, z) and instead we
will compute the expectation of the complete log likelihood under the posterior distribution with the
current set of parameter estimates

Epθo (z|x)[ln pθ(x, z)] =
∑
z

pθo(z|x) ln pθ(x, z) = Q(θ, θo). (2.17)

Computing this expectation is the E step of the EM algorithm. Then,the M step is the maximization
of Q(θ, θo) with respect to θ. Here, θo stands for old θ and is the set of parameters under which we
computed the posterior pθo(z|x). In some cases, the M step can be done analytically.

Specifically for a mixture of Gaussian, both steps are quite simple. The posterior pθo(z|x) is

pθo(zn = k|xn) =
πkNθk(xn)∑K
j=1 πjNθk(xn)

= γ(zk), (2.18)

where πk = p(z = k). Then optimizing Q(θ, θo) leads to the following estimates

µnew
k =

1

Nk

N∑
n=1

γ(znk)xn

Σnew =
1

Nk

N∑
n=1

γ(znk)(xn − µnew
k)(xn − µnew

k)T

πnew
k =

Nk

N
,

Chapter 2. Machine learning background 18

where Nk =
∑N

n=1 γ(znk). Full details and proofs are available in Hastie et al. book [61].

However, we are going to use the ELBO-KL decomposition to demonstrate how the EM algorithm
succeed at maximizing the likelihood and we will motivate the need for other techniques.

We previously demonstrated that L(qφ, pθ) is a lower bound for the log-likelihood of the observed
data ln pθ(x). The ELBO is function of the parameters θ of the distribution pθ and of the parameters φ

of a distribution over the latent variables qφ(z). Let’s demonstrate how both steps of the EM algorithm
increase L(qφ, pθ) in their own way. In the E step, we maximize L(qφ, pθ) with respect to φ while in the
M, we then maximize L(qφ, pθ) with respect to θ.

The E step considers the effect of z through the posterior distribution pθ(z|x) under the current set
of parameters, and then compute the expectation of the complete log-likelihood under that posterior
distribution. The E step consist of setting qφ(z) = pθ(z|x). We know that L(qφ, pθ) = ln pθ(x)−KL(q||p)
and thus in this formulation the ELBO depends on φ only in the KL component. Setting qφ(z) = pθ(z|x)
makes the KL divergence vanish which effectively maximize L(qφ, pθ). This also highlights one of the
main assumptions necessary to use an EM algorithm, we need to be able to compute pθ(z|x).

In the following M step, we maximize Q(θ, θo) with respect to the parameters θ. Let’s actually see
what happens when we substitute qφ(z) by pθo(z|x) in the lower bound

L(qφ, pθ) =
∑
z

qφ(z) ln

(
pθ(x, z)

qφ(z)

)
⇒ L(pθo(z|x), θ) =

∑
z

pθo(z|x) ln
(
pθ(x, z)

pθo(z|x)

)
=
∑
z

pθo(z|x) ln pθ(x, z)−
∑
Z

pθo(z|x)) ln pθo(z|x))

= Q(θ, θo) + const.

In the M step, we maximize Q(θ, θo) with respect to θ. This maximizes the ELBO in parallel since the
two are equal up to a constant.

Assuming the EM algorithm is successful at fitting such latent variable models it is reasonable to
ask why would we need any other techniques to optimize the parameters in latent variable models. The
problem with EM is that it requires us to compute pθo(z|x) which may not be feasible in some cases.
The proposed solution in those cases is to directly maximise the ELBO in another way.

In this thesis, GMM and PCA often serve the role as a reference point when discussing more com-
plicated latent variable models, they are widely used and well-known and so are their limitations.

2.2.3 Variational autoencoders

Before discussing the Variational AutoEncoder (VAE) model, let us introduce the simple AutoEncoder
(AE) as a generalized PCA algorithm.

Chapter 2. Machine learning background 19

An AE is a model that simultaneously learn how to compress and decompress data. More generally,
it is possible to train AEs to project data to a higher dimensional space but here we will assume the
latent representation is of lower dimension.

Assuming we have n observations S = {xi : i ∈ (1, ..., n)} of m dimensions. We want to learn a
simple deterministic function q that projects the data to a lower dimension representation of size d, i.e.
q : X → Z, where X is the observed data space of size m and Z is the latent representation space of
size d. Simultaneously, we learn a decompression function p from the projected space (d) to the full
dimension (m) space p : Z → X . An AE simultaneously learns q and p usually by minimizing some
metric of reconstruction error.

z1

zd

x1

xm

x̃1

x̃m

Figure 2.3: A simple AE where x̃ is the reconstructed x, i.e. p(q(x)) = x̃.

Under the assumptions that both q and p are simple linear combinations and that we minimize the
mean squared reconstruction error

∑n
i=1 ||p(q(xn))−xn||2 the solutions of such system are given by the d

eigenvectors associated with the d biggest eigenvalues; the PCA solution. Proofs are available in Bishop’s
book [15]. We previously introduced PCA as a solution to the maximum variance lower-dimensional
projection problem but it turns out it is also the solution for this minimal reconstruction error problem.
Since PCA is well-know in the statistical community and AEs are well-know in the machine learning
community, this results create a nice intuitive way to tie together these two algorithms.

However, an AE can be generalized in many ways: it can be made of non-linear functions for example
and those functions can be optimized with respect to another objective function.

VAEs [86, 83] form a flexible family of latent variable models. Two major changes to the classic
AE are made: (1) we assume a distribution on the latent variable z and a distribution on the observed
variable x which results in a probabilistic model and (2) p and q are NNs. Because we have a probabilistic
model, p maps the latent variable to the parameters of the observed distribution and similarly q maps
the observed variable to the parameters of the latent distribution.

For GMMs, we have such probabilistic mapping; the component z affect the parameters of the
observed normal distribution. In this case, the mapping from z to x is θ : {1, .., k} → (Rm) × (Rm ×

Chapter 2. Machine learning background 20

Rm). Each component k has it’s own set of parameters: if z = j then p(x|z) = N(µj , σj). For our
demonstration of VAEs, we assume the distribution of x is still Gaussian but we also assume that z is
Gaussian as well. Typically, it is assumed that z ∼ N(0, I). Since z is now continuous, we could identify
this model as a Gaussian mixture where we have infinitely many components. Furthermore, to allow
this, the parameters are now a continuous function of the latent variable z; θ = [µx, σx] = fx(z). To
use a short notation, we identify µx(z) as the function that takes z as input and return the parameters
µx associated with this value and same for σx(z) or θ(z) : Rd → Rm × Rm

+ because x are independent
given z in most implementations. Because θ is a continuous function, it ensures that points that are
alike (close to one another) in the latent space are also near in the observation space.

We define z as the latent representation of the observation x or as its code and θ(z) as the decoding
function which takes in the code and return the parameters of the observed-data distribution. We use
a neural network (NN) function as decoding function. It has the benefit of allowing for a maximum
amount of flexibility but in turn makes the posterior of the latent pθ(z|x) intractable analytically and
consequently the EM algorithm cannot be used.

The proposed solution is to estimate pθ(z|x) with an approximate distribution qφ(z|x). This tech-
nique is know as variational inference and we call the approximate distribution qφ(z|x) the variational
distribution. With that variational distribution, the resulting ELBO is

L(φ, θ) = Eqφ(z|x) [ln pθ(z) + ln pθ(x|z)− ln qφ(z|x)]

We define qφ(z|x) as the encoding distribution. The effect of x on the encoding distribution is reflected in
the parameters φ. We assume qφ to be a normal distribution and once again we explain the parameters
φ as a function of x; φ = [µz, σz] = fz(x) or φ(x) : Rm → Rd×Rd

+. This function is set to be a NN that
we will refer as φ(x) or µz(x) and σz(x) from now on.

Since we cannot directly compute Eqφ(z|x) [ln pθ(z) + ln pθ(x|z)− ln qφ(z|x)] we will sample Monte
Carlo estimates of the ELBO. In other words, we draw z from qφ(z|x) and then compute ln pθ(z) +

ln pθ(x|z) − ln qφ(z|x) for a batch of observations. After, we maximize the batch ELBO Monte Carlo
estimate with respect to the parameters of both NN functions, θ(z) and φ(x). This allows us to train a
VAE.

Algorithm 4 : Optimize VAE(x,d)
INPUT: training observations x, size of the latent representation d

1) Process observations x through the NNs φ to produce φ(x)

2) Sample z from qφ(x)(z|x)
3) Process latent sample z through the NNs θ to produce θ(z).
4) Compute ln pθ(x)(z) + ln pθ(z)(x|z)− ln qφ(z|x), the ELBO Monte Carlo estimate.
5) Maximize the ELBO with respect to the weights of φ and σ using back propagation
Repeat 1-5 until convergence.
OUTPUT: Trained VAE; weights of the NNs φ and θ optimized to maximize the ELBO.

VAEs are central to the last three research projects contained in this thesis. First we adapt VAEs
for survival analysis, a very well-know type of data analysis in statistics, this is discussed in Chapter

Chapter 2. Machine learning background 21

6. Second, most of our work in computer vision is built on VAE: for instance our experiments with
controllable generative model rellied on VAEs as explained in Chapter 7. Finally, we noticed a large gap
between the theory of VAE and common implementations. These differences are mostly unacknowledged
in the literature and this is a topic we address in Chapter 5.

Chapter 3

Analysis of an academic data set

An application of random forests
In this chapter, a large data set containing every course taken by every undergraduate student in

a major university in Canada over 10 years is analysed. To begin, the first two semesters of courses
completed by a student are used to predict if they will obtain an undergraduate degree. Secondly, for
the students that completed a program, their major is predicted using once again the first few courses
they have registered to. We selected random forests as classifiers for this project because these models
are not built on any assumptions about the data distributions and are easy to use out of the box. They
also allow for reliable variable importance measurements. These measures explain what variables are
useful to the classifiers and can be used to better understand what is statistically related to the students’
situation.

In this chapter, we demonstrate (1) the potential of Random Forest models as simple and easy-to-
use alternatives to linear models and (2) the strength of variable importance analysis to obtain useful
information difficult to gather with traditional statistical models. The main contributions of this chapter
were introduced first in our article Predicting University Students’ Academic Success and Major using
Random Forests [9] published in Research in Higher Education.

3.1 Introduction
Being able to predict if a student is at risk of not completing its program is valuable for universities
that would like to intervene and help those students move forward. Predicting the major that will
be completed by students is also important in order to understand as soon as possible which program
attracts more students and allocate resources accordingly. Since gathering data can be an expensive
procedure, it would be useful being able to predict both of these things using data the university already
possesses such as student records. Understanding which variables are useful in both of these predictions
is important as it might help understand what drives student in taking specific classes.

These two prediction problems are classification problems. To solve these, a popular machine learning
algorithm is used, a Random Forest (RF). A RF is a collection of classification trees which naturally

22

Chapter 3. Analysis of an academic data set 23

allows interactions of high degree across predictors. The RF uses the first few courses attempted and
grades obtained by students in order to classify them. A RF can also be used to assess variable importance
in a reliable manner.

The University of Toronto provided a large data set containing individual-level student grades for all
undergraduate students enrolled at the Faculty of Arts and Science at the University of Toronto - St.
George campus between 2000 and 2010. The data set contains over 1 600 000 grades and over 65 000
students. This data set was studied by Bailey et al. [6] and was used to build an adjusted GPA that
considers course difficulty levels. Here, RF classifiers are built upon this data set and these classifiers
are later tested.

The contribution in this chapter is two-fold. First we demonstrate the high performance of RF as
out-of-the-box model which obtains higher prediction accuracy than linear classifiers thus making them
useful for universities that would like to predict where their resources need to be allocated. Second, the
variable importance analysis produced by the RF contains lots of information. Among many things, the
high importance of grades in low-grading departments was noted; this is often identified as a symptom
of grade inflation in higher education.

3.2 Literature review

3.2.1 Predicting success

In this chapter a statistical learning model is established to predict if a student succeeds at completing an
undergraduate program and to predict what major was completed. This statistical analysis of a higher
education data set shares similarities with recent articles by Chen and Desjardins [27, 28] and Leeds
and DesJardins [96] as a statistical approach is introduced, a data set is presented and policy making
implications is discussed. The task of predicting student academic success has already been undertaken
by many researchers. Recently Kappe and van des Flier [78] tried to predict academic success using
personality traits. In the meanwhile, Glaesser and Cooper [54] were interested in the role of parents’
education, gender and other socio-economic metrics in predicting high school success.

While the articles mentioned above use socio-economic status and personality traits to predict aca-
demic success, many researchers are looking at academic-related metrics to predict graduation rates.
Johnson and Stage [75] use High-Impact Practices, such as undergraduate research, freshman seminars,
internships and collaborative assignments to predict academic success. Using regression models, they
noted that freshman seminars and internships were significant predictors. Niessen and al. [112] discuss
the significance of trial-studying test in predicting student dropouts. This test was designed to simulate
a representative first-year course and student would take it before admission. The authors noted that
this test was consistently the best academic achievement predictor.

More recently, Aulck and al. [5] used various machine learning methods to analyse a rather large
data set containing both socio-economic and academic metrics to predict dropouts. They noted similar
performances for the three methods compared; logistic regression, k-nearest neighbours and random
forests. The proposed analysis differs from the above-mentioned as it takes on the challenge to predict
academic success and major using strictly academic information available in student records. The benefits

Chapter 3. Analysis of an academic data set 24

of having classifiers built upon data they already own is tangible for university administrations. It
means universities would not need to force students to take entry tests or rely on outside firms in order
to predict success rate and major which is useful in order to prevent dropout or to allocate resources
among departments. As noted by Aulck and al. [5] machine learning analysis of academic data has
potential and the uses of random forest in this chapter aims at exploiting this potential.

3.2.2 Identifying important predictors

Identifying and interpreting the variables that are useful to those predictions are important problems
as well. It can provide university administrators with interesting information. The precise effect of
grades on a student motivation lead to many debates and publications over the years (more recently
[109, 113]). Because grades should be indicators of a student’s abilities, evaluating the predictive power
of grades in various departments is important. University administrators might want to know if grades in
a department are better predictors than grades in other departments. Continuing on the point, it is also
important to understand what makes the evaluations in a department a better indicator of students’
success. Random forest mechanisms lead to variable importance assessment techniques that will be
useful to understand the predictive power of grades variables.

Understanding the importance ranking of grades in various departments can also enlighten us regard-
ing the phenomenon of grade inflation. This problem and some of its effect has been already discussed
in many papers ([130, 76, 7]) and it is consensual that this inflation differs from one department to
another. According to Sabot and Wakeman-Linn, [130] this is problematic since grades serve as incen-
tives for course choices for students and now those incentives are distorted by the grade inflation. As
a consequence of the different growths in grades, they noted that in many universities there exist a
chasm in grading policies creating high-grading departments and low-grading departments. Economics,
Chemistry and Mathematics are examples of low-grading departments while English, Philosophy and
Political Science are considered high-grading.

As Johnson mentions [76], students are aware of these differences in grading, openly discuss them
and this may affect the courses they select. This inconsistency in course difficulty is also considered by
Bailey and al. [6] as they built an adjusted GPA that considers course difficulty levels. The accuracy
of that adjusted GPA in predicting uniform test result is a great demonstration that courses do vary
in difficulty. If some departments suffer from grade inflation, the grades assigned in that department
should be less tied to the actual student ability and therefore they should be less predictive of student
success. A thorough variable importance analysis will be performed in order to test this assumption.

Understanding which predictors are important can also provide university administrators with feed-
back about some of their programs. For example, some of the High-Impact Practices identified by
Johnson and Stage [75] are part of the University of Toronto’s program. The variable importance anal-
ysis could be a useful tool to evaluate the effect of such practices.

Chapter 3. Analysis of an academic data set 25

3.3 Methodology

3.3.1 Data

The data set provided by the University of Toronto contains 1 656 977 data points, where each observation
represents the grade of one student in one course. The data was collected over 10 years. A data point
is a 7 dimensions observation containing the student ID, the course title, the department of the course,
the semester, the credit value of the course and finally the numerical grade obtained by the student.

Since this is the only data obtained, some pre-processing is required in order for algorithms to be
trained. The first research question is whether it is possible to design an algorithm which accurately
predicts whether or not a student will complete their program. The second research question is
whether it is possible to design an algorithm which accurately predicts, for students who complete their
program, which major they will complete. These two predictions will be based upon first-year student
records.

The data has been pre-processed for the needs of the analyses. At the University of Toronto, a
student must complete 20 credits in order to obtain an Honours B.A. or B.Sc [148]. A student must
also either complete 1 Specialist, 2 Majors or 1 Major and 2 Minors. The first five credits attempted
by a student roughly represent one year of courses. Therefore, for each student every semester until
the student reaches 5 attempted credits are used for prediction. It means that for some students, the
predictors represent exactly 5 attempted credits and for some other students, a bit more. The set of
predictors consists of the number of credits a student attempted in every department and the average
grade across all courses taken by the student in each department. Since courses were taken by students
in 71 different departments, the predictor vector is of length 142. Of course, many other predictors
could also be computed from the data set, but these are the most appropriate ones for the purpose of
the variable importance analysis.

The missing values for grades were replaced by values outside of the domain, -1 in this case. To
answer the first research question, a binary response indicating whether or not a student completed
their program is needed. Students that completed 18 credits were labelled as students who completed
their program. Students who registered to 5 credits worth of courses, succeeded at fewer than 18
credits worth of courses and stopped taking courses for 3 consecutive semesters are considered students
who began a program but did not complete it. Since some students take classes in other faculties or
universities, 18 credits was deemed a reasonable threshold. It is possible that some students did not
complete their program even though they completed 18 credits, but it is more likely that they took
courses in other faculties or universities. To be considered dropouts, only students who registered to at
least 5 credits worth of courses were considered. It was assumed that students that registered to fewer
credits were registered in another faculty, campus, university or were simply auditing students. After
this pre-processing was performed, the data set contains 38 842 students of which 26 488 completed an
undergraduate program and 12 294 did not.

Additionally, since the data set was collected over 10 years but it takes 4 years to complete an
undergraduate program plenty of cohorts were given the opportunity to complete their program within
the time frame the data was collected. Nevertheless, there might be some bias in the records included

Chapter 3. Analysis of an academic data set 26

because slow students might be under-represented. We assume this bias to be negligible for our analysis;
we assume that the speed at which student complete their program has a negligible effect on both
responses.

To answer the second research question a categorical response representing the major completed by
the student is required. To do so, the 26 448 students who completed a program are kept. The response
will represent the major completed by the student. Since this information is not available in the data set,
the department in which the student completed the largest number of credits is considered the program
they majored in. Therefore, the response variable is a categorical variable that can take 71 possible
values. This formatting choice might be a problem for students who completed more than 1 major.
Some recommendations to fix that problem can be found in the conclusion.

Regarding the various grading policies of this university it was noticed that Mathematics, Chemistry
and Economics are the three departments with the lowest average grades. As grades do vary widely
across the data set there is no statistically significant difference between the departments but we did
observe nonetheless that departments that were defined as low-grading departments in many papers do
appear as the lowest grading departments in this data set too.

3.3.2 Techniques

The analysis is performed using Random Forests as introduced in Chapter 2. In order to train our
model, set hyper-parameters and test our model, we divide the data set in three parts. The algorithm
is trained upon the training set, which contains 90% of the observations in order to learn from a large
portion of the data set. 5% of the data set is assigned to the validation set which is utilized to select
various optimization parameters. Finally, the rest of the data set is assigned to the test set, which is a
data set totally left aside during training and later used to test the performances of the trained classifier.

In this project, random forests were used because they are stable classifiers with many interesting
properties. Let us explain why RFs would be prefer over the logistic regression. To begin, RF are built
upon very few data assumptions; in this case predictors are collinear which would be a problem for the
logistic regression. We also assume there exist interactions between the predictors, given we have 142
predictors, including interactions of high degree in a logistic regression would be difficult. Finally, RFs
also allow us to compute the variable importance which evaluates the importance of individual predictors
throughout the entire prediction process. As discussed in Chapter 2, this is something Logistic regression
cannot provide. Let us further discuss variable importance techniques in RFs.

3.3.3 Variable Importance in Random Forests

A variable importance analysis aims at understanding the effect of individual predictors on the classifier
output. A predictor with a great effect is considered an important predictor. The ability to assess the
importance of a predictor is something neither the p-value nor the size of the coefficient is suited to do.
A RF provides multiple variable importance computations. The Gini decrease importance sums the total
impurity measure decrease caused by partitioning upon a predictor throughout an entire tree and then
computes the average of this measure across all trees in a forest. This technique is tightly related to the
construction process of the tree itself and is pretty easy to obtain as it is non-demanding computationally.

Chapter 3. Analysis of an academic data set 27

As explained in Chapter 2, the permutation decrease importance computes the importance of a predictor
for an algorithm based on how much the accuracy of the given algorithm drops when the predictor is
permuted. If a predictor has a significant effect on the response, the algorithm should lose a lot of
prediction accuracy if the values of that predictor are permuted in the test set.

Storbl & al. [139] recently published an article where these techniques are analysed and compared.
According to this paper, the selection bias of the decision tree procedure might lead to misleading variable
importance. Numerous papers [22, 82, 89] noticed a selection bias within the decision tree procedure
when the predictors are of different nature. The simulation studies produced by Storbl & al. [139]
show that the Gini decrease importance is not a reliable variable importance measure when predictors
are of varying types. The Gini decrease importance measure tends to overestimate the importance of
continuous variables.

It is also shown [139] that the variable importance techniques described above can give misleading
results due the replacements when drawing bootstrap samples. It is recommended that researchers
build RFs with bootstrap samples without replacements (a random subsample) and use an unbiased
tree-building procedure [103, 82, 102, 66]. If a classic tree-building procedure is used, predictors should
be of the same type or only the permutation decrease importance is reliable. We respected those
recommendations when we computed the variable importance.

3.3.4 Algorithms

A classification tree using the Gini impurity as splitting criteria was coded in the C++ language using the
Rcpp library [43]. The algorithm proceeds as explained in Chapter 2, the tree it produces is unpruned
and training sets are partitioned until they contain only 50 observations. Three versions of the RF
algorithm are going to be used. Even though one of these models outperforms to two others in terms of
prediction accuracy, the variable importance analysis of all three models are considered and aggregated.
For clarity and conciseness purposes, only the best model’s performance is included but performances
across the three forests are quite similar. Random forest # 1 consists of 200 trees and can split
upon every variable in each region. Bootstrap samples are drawn without replacement and contain 63%
of the original training set. Random forest # 2 fits 200 trees but randomly selects the variable to be
partitioned upon in each region.

Finally, the popular R RandomForest package [97] was also used. It is an easy to use and reliable
package that can fit RFs and produce variable importance plots. Using this package, random forest #
3 was built. It contains 200 trees. Once again, bootstrap samples are drawn without replacement and
contain about 63% of the size of the original training set. By default, this algorithm randomly selects
a subset of inputs for each region. Regarding the impurity measure, the Gini impurity was selected
because it has important theoretical properties, such as being differentiable, and has been performing
well empirically.

Linear models were trained for both of the classification problems serving as benchmarks. In order
for the comparison to be as direct as possible, the linear model classifiers were constructed upon the
same set of predictors; it may be possible to improve both the RF and the linear model with different
predictors. As the problems are two classification ones, the linear model selected was a logistic model
for the first research questions and a multinomial logistic model for the second research question.

Chapter 3. Analysis of an academic data set 28

3.4 Results

3.4.1 First research question : Predicting program completion

Random forest # 3 produced the best accuracy on the test set. Among the students who completed
their program in the test set, the classifier achieves 91.19% accuracy. Out of the 418 students who did
not complete their program, the classifier achieves 52.95% accuracy. The combined result is 78.84%
accuracy over the complete test set.

This is higher accuracy than if all students would be classified as students who competed their
program, a very naive classification technique, which would result in 68.08% accuracy. The RF accuracy
is also higher than the 74.21% accuracy achieved with a logistic regression fit on the same predictors.
These predictions can be useful for university administrations that would like to predict the number of
second-year students and prepare accordingly with a sufficient margin. About 75% of students identified
as dropouts by the RF classifier are true dropouts. Therefore students identified as dropouts by the
algorithm could be considered higher-risk students and these predictions could be useful in order to
target students in need of more support to succeed. The relatively high accuracy of the classifier is also
an indicator that the variable importance analysis is reliable.

Variable importance is determined by the average decrease in accuracy in the test set caused by
a random permutation of the predictor. This technique has been selected since it is more reliable as
explained in Section 3.3.3. The top 15 variables according to the permutation decrease were kept and
ordered in Figure 3.1. Since variable importance varies from one model to another, the three variable
importance plots were included and the results will be aggregated.

Since these RFs are meant to predict student’s success at completing an undergraduate program, we
think it is interesting to observe which predictor is important in producing such prediction. In Figure
3.1 and for all the following figures, the variable representing the number of credits in a department is
identified by the department code, i.e. the number of credits in Chemistry is identified by CHM. The
variable representing the averaged grade in a department is identified by the department code followed
by the letter G, i.e CHM G represents the averaged grade in Chemistry.

To begin, it was also noted that the variance for the grade variables were larger. Across all three RFs,
the grades in Mathematics (MAT), Finance (COMPG), Economics (ECO) are consistently among the
most important grade variable. These departments are considered low-grading departments and perhaps
the strict marking of these departments helps to better distinguish students among themselves and
successfully predict their program completion status. A possible explanation is that the grade inflation
that suffered the high-grading departments caused the grades in those departments to be no longer a
reliable tool estimate student students abilities which could be a symptom of grade inflation as suggested
in Section 3.2.2. Other factors could have caused this phenomenon such as less sequential courses in
Human Science fields, larger classes size, reduced access to a professor or other factors. Regardless, we
noticed how grades in different departments contribute much more to the model than grades in other
departments. Therefore, universities could use such technique to verify if grades in a department have
more predictive power than grades in other departments and act accordingly since grades are meant to
represent students’ abilities.

Chapter 3. Analysis of an academic data set 29

PSY

ENG

ENG G

ZOO G

HIS

CHM G

ZOO

ECO G

ECO

COMPG G

CHM

ASSEM

ASSEM G

MAT

MAT G

0.00 0.05 0.10 0.15

Decrease in accuracy by permutation of predictors

(a) Random forest # 1.

SOC

PHY

PSY

COMPG G

ECO

ECO G

PHY G

CHM

ZOO

ZOO G

ASSEM G

CHM G

ASSEM

MAT

MAT G

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Decrease in accuracy by permutation of predictors

(b) Random forest # 2.

Chapter 3. Analysis of an academic data set 30

PSY G

HIS G

HIS

CHM

MAT

CSC G

CSC

PSY

ECO G

ENG G

ENG

STAT

ASSEM

MAT G

ASSEM G

25 30 35

Decrease in accuracy by permutation of predictors

(c) Random forest # 3.

Figure 3.1: Permutation decreases importance boxplots for the first research question.

We also noticed the importance of ASSEM in the three variable importance plots. The ASSEM
code represents a special type of first year seminar course. It seems that the students that registers in
theses courses are easy to classify as both grades and the number of credits are considered important.
This result agrees with the result obtained by Johnson and Stage [75] about the importance of first
year seminar courses. The first year seminar courses (ASSEM) were brand new at the University of
Toronto and the analysis performed provided evidence of the merit of such courses in order to establish
a student’s profile and to predict success. In other words, such variable importance analysis could help
university administrations assess the usefulness of new programs and courses.

3.4.2 Second research question : Predicting the major

The second task at hand is to build a RF that predicts the student’s major. Once again, from a prediction
accuracy perspective, random forest # 3 offered better performances with 47.41% accuracy when
predicting the major completed. This appears slightly lower than expected, but considering there are
71 different programs, being able to pin down the right program for about half of the students seems
successful. This is a better result than the meager 4.75% obtained by assigning majors with probabilities
weighted by the proportion of the majors completed. The 47.41% accuracy of the RF is also significantly
better than the 42.63% accuracy obtained with the multinomial logistic regression benchmark. For
classification purposes, these classifiers could help individual departments predict the number of students
registering to second, third or fourth year courses and graduate programs. Predicting the major could
also help university administrations to allocate the financial resources among the departments or to

Chapter 3. Analysis of an academic data set 31

decide the programs that require more advertisements.

Though harder to interpret, variable importance can also provide additional information with respect
to that research questions. Here is the variable importance analyses produced by the three RFs; once
again, the 15 most important predictors are displayed. The importance of a predictor is determined by
the average decrease in accuracy in the test set caused by a random permutation of the predictor.

A decrease in importance for the grades variable is noted in Figure 3.2. This was to be expected
because of how the data was formatted. Since the department in which the highest amount of credit
was obtained is considered the major completed by the student, these variable importance measures are
not surprising. Actually, if all the courses were included, instead of only the first year, the amount of
credit in every department precisely defines the response variable. Considering this weakness in the data
formatting, the grades still have a relatively high importance. It seems hard to see any effect of grading
policies in the predictive power of grades regarding that research question.

It seems like for some departments, such as English (ENG) and Computers Sciences (CSC), it is
easy to predict students that will complete a major in those departments by almost solely looking at the
number of courses attempted in those departments during the first year. This is caused by the fact that
a vast majority of students that take courses in Computers Science or English during their first year
end up completing an undergraduate program in these departments respectively. From a policy-making
perspective, departments could use this information as they might want to adapt the content of their
first-year courses now that they know more about the audience of these courses.

3.5 Conclusion
The first year’s worth of courses and grades were used to build two classifiers; one that predicts if a
student will complete their undergraduate program, the other that predicts the major of a student who
completed a program. RFs were used to build those classifiers. Decision trees and RFs are the simple
staple ML models and thus we wanted to gain experience with them before going into more modern
machine learning algorithm. It felt fair comparing them to the statistical equivalent; linear models.
RFs are easy to use with most statistical computing languages, fast to train, include high degree of
interactions and they outperform linear logistic models in terms of prediction accuracy in this particular
instance. For practitioners, RFs could be an alternative to typical linear models for various prediction
tasks; to predict the number of students registered in second-year courses, the distribution of students
across the many programs or to identify students at risk of failing or dropping out.

Evaluating the importance of each predictor is also something that offers RF in comparison to linear
models. In this study, it was observed in Section 3.4 that grades were important for predicting if a student
will complete their program. Grades in departments that were considered low-grading departments in
some grades inflation research articles like Mathematics, Economics and Finance are consistently among
the most important variables. These results indicate that a strong relationship exists between the grades
in low-grading departments and the chance of succeeding at an undergraduate program, although this
does not necessarily indicate a causal connection. Grades were somewhat less important predictors

Chapter 3. Analysis of an academic data set 32

SOC G

MAT

HIS G

HIS

CHM G

POL G

CSC G

MAT G

ECO G

COMPG G

POL

PSY G

CSC

ENG

COMPG

0.00 0.02 0.04 0.06

Decrease in accuracy by permutation of predictors

(a) Random forest # 1.

PSY

ZOO

POL G

ENG

ZOO G

CHM

CSC

CHM G

PSY G

ECO

ECO G

MAT

MAT G

COMPG G

COMPG

0.00 0.02 0.04 0.06 0.08 0.10

Decrease in accuracy by permutation of predictors

(b) Random forest # 2.

Chapter 3. Analysis of an academic data set 33

FAR

ANT G

COMPG

HIS G

EAS

SOC G

ECO G

PSY

POL G

CSC G

GGR

COMPG G

CSC

ENG

PSY G

30 35 40 45 50

Decrease in accuracy by permutation of predictors

(c) Random forest # 3.

Figure 3.2: Permutation decreases importance boxplots for the second research question.

for predicting the students’ major but even though they were less important, grades in Mathematics,
Finance, Economics and Psychology (PSY) were still frequently significantly important.

For potential improvements in the data analysis, we noted that some students might have completed
more than one major or specialization. This might explain the relatively low accuracy for major choice
prediction. Allowing for multiple major choices is a potential improvement for this model. This is in fact
a multi-label classification problem and some solutions have already been proposed to adapt decision
trees to accommodate this more complicated problem [33, 29, 30]. Some departments also share a great
deal of similarities and might be considered equivalent by the university, thus combining some of them
might increase the prediction accuracy.

The missing values in the predictors were also problematic. Ideally, the algorithm would consider
splitting on the grade variables for a certain department only to classify students who took courses in
that department. Developing a new decision tree algorithm where new variables are added to the pool
of potential split variables depending on previous partitioning is the topic at hand in the next chapter
of the thesis where we present BEST our implementation of such Decision Tree algorithm.

Chapter 4

BEST : A new decision tree
algorithm that handles missing
values

The main contribution of this chapter is the development of a new decision tree algorithm. The proposed
approach allows users to guide the algorithm through the data partitioning process. This feature has
many applications but in this chapter we demonstrate how to utilize this algorithm to analyse data
sets containing missing values. We test our algorithm against various simulated data sets with different
missing data structures. We also test our algorithm against a real data set, the data set introduction in
the previous chapter.

In this chapter, the contributions are (1) a new decision tree algorithm publicly available on CRAN
under the package named BESTree, (2) the demonstration that this algorithm efficiently handles missing
values and produces results that are slightly more accurate and more interpretable than most common
procedures without any imputations or pre-processing and (3) an updated analysis of the grade data
set using this new algorithm. The main contributions of this chapter were introduced first in our article
BEST : A decision tree algorithm that handles missing values [11] published in Computational Statistics.

4.1 Introduction
Machine learning algorithms are used in many exciting real data applications, in the chapter we address
a classic statistics problem that is common when dealing with real data: predictors with missing values.
Imputation techniques are designed to handle data with missing value under the assumption that data is
missing completely at random (MCAR). Since this is a restrictive assumption we propose a solution to
this problem that uses the tree structure of Classification and Regression Trees (CART) [22] to deal in
an intuitive manner with observations that are missing in patterns which are not completely at random.

Our proposed new tree construction procedure was inspired by the data set introduce in Chapter 3
where the missing pattern of one subset of predictors could be perfectly explained by another subset;
the number of credits variables explain the missing pattern of their respective average grade variables.

34

Chapter 4. BEST : A new decision tree algorithm that handles missing values 35

A typical decision tree is an algorithm that partitions the predictor space based upon a predictor
value, splitting it into multiple subspaces and repeats this process recursively. Our proposed algorithm
allows the researcher to impose a structure on the variables available for the partitioning process. By
doing so, we construct Branch-Exclusive Splits Trees (BEST).

When a predictor Xj contains missing values, we can use other predictors to identify the region where
the predictor Xj contains no missing value. This way, we can use the proposed algorithm to consider
splitting on a predictor only when it contains no missing value based on previous partitioning. BEST can
be easily adapted to any goodness of split criterion, stopping rule, labelling rule and any forest forming
procedure [18, 20, 53]. BEST also has other applications; it can be used by researchers that would like
to utilize some knowledge they have on the data generating distribution in order to guide the algorithm
in selecting a more accurate and more interpretable classifier.

In this chapter, we introduce the proposed algorithm and some motivating examples before explaining
in detail how the algorithm functions. We then do a quick review of the literature to position our
algorithm within the current literature. Finally, some tests are performed on simulated data sets and
on the real data that inspired this new algorithm.

4.2 Missing values
Let us now introduce the definition of missing data we are using in this chapter. As described in Section
2.1, a standard assumption in data analysis is that all observations are distributed according to the true
data generation distribution D. We could think of the missingness itself as a binary random variable M

also of dimension m that is distributed according to some missingness generating distribution which is a
part of D, i.e. X×M×Y ∼ D. If M represents the missingness of the vector of predictors X it means
that Mj = 1 if Xj is observed and Mj = 0 if Xj is missing.

Three different relationships between M and X were defined by Rubin [126] and by Little and Rubin
[98]. Seaman [132] later untangled the many definition inconsistencies of these relationships. In this
chapter, we rely on simple definitions for an easy understanding of the structure we consider. First,
missing completely at random (MCAR) is the simplest structure we consider: M ⊥ X. In other words,
we consider the data is MCAR if the set of missing patterns M is independent of the set of predictors.

Missing at random (MAR) is much more complicated; it means that the missingness M is independent
of missing observations but can still depend on observed predictors. More specifically, we define Xo =

{xij ∈ S|xij is observed} as the set of all observed predictors value, and Xna = {xij ∈ S|xij is missing}
as the set of missing predictors value. We say that data is MAR if the distribution of the missingness is
conditionally independent of missing values given observed values : M ⊥ Xna|Xo. As pointed by Seaman
[132], MAR has not always been used consistently and the definition above is the one we settled on for
this project. Note that MCAR implies MAR.

Finally, if the missing data is neither MCAR nor MAR, we say that the data is missing not at random
(MNAR). In the sections to come we compare algorithms under these three missing data structures and
we see that the relationship between M and X has a considerable effect on the performance of the
missing values techniques that exist.

Chapter 4. BEST : A new decision tree algorithm that handles missing values 36

4.3 Branch-Exclusive Splits Trees (BEST)
We now introduce the proposed algorithm, BEST. The purpose of BEST is to utilize the tree structure
itself in order to manage some missing data or some special structure among predictors.

4.3.1 Motivating Example

The data set previously introduced in Chapter 3 motivated our proposed algorithm and thus we reintro-
duce it quickly in the section. Recall that it contains information regarding the academic performances
of students. The data set was provided to us by the Univeristy of Toronto. The predictors represent the
number of credits and grades obtained in all the departments during the first two semesters. Table 4.1
contains a preview of the data with a reduced number of departments.

Student ID Credits Math Grade Math Credits Econ Grade Econ Credits Hist Grade Hist
101 2 72 3 88 0 NA
208 0 NA 0 NA 5 78

Table 4.1: An example of the motivating data set for 2 students and 3 departments

A student has no grade in many departments as they can only register to a limited number of courses
within a year. In this situation, many grade variables are missing for every student. BEST handles that
problem by considering the averaged grade obtained in a department only for students who took courses
in that department.

For example, BEST forces the classification tree algorithm to split upon the Number of credits
predictor to begin. Then, suppose Number of credits in Statistics is selected and 2 is the split point for
the partitioning, BEST then allows splits on the Grade in Statistics predictor for the group of students
in the region defined by Number of credits in Statistics > 2. Therefore, the Number of credits variables
are used to define the region where their respective Grade variables are available for the partitioning
process and thus we say that the Number of credits are gating variables for the Grade variables. The
many Grade variables are gated by their respective Number of credits variables. Figure 4.9 illustrates
how a BEST decision tree uses Number of credits as a gating variable for Grade.

Grade not available

Grade not available

Grade not available Grade available

Grade available

Credit < 2

Credit = 0 Credit > 0

Credit ≥ 2

Figure 4.1: An example of BEST decision tree partitioning upon the Credit variable and the availability
of the Grade variable within each of the produced regions

Chapter 4. BEST : A new decision tree algorithm that handles missing values 37

Other real data sets with similar problems are surveys. Many surveys have questions that are only
relevant based on previous answers. Suppose question #1 is a yes/no question and is followed by : If
you answered no, please go to question #3. This is quite typical and in that situation, BEST can use
question #1 as a gating variable for question #2.

4.3.2 Intuition

As we explained in Section 2.1.2, a classification tree aims at partitioning the predictor space and labelling
the resulting regions. CART does so by looking through all the possible splits and selecting the one that
minimizes some pre-specified error measure. When using BEST some predictors are available to split
upon only within some regions of the predictor space, such as the Grade variables in the motivating data
set. These regions are defined according to other predictors, such as the Number of credits variables in
the motivating data set. More generally, predictor Xl could be only available for the partitioning process
in the region defined by Xj < t. We say that Xj is a gating variable for Xl or that Xl is gated by Xj .
The variable Xl is not be available for the partitioning process until the gating variable allows it. Table
4.2 illustrates when BEST can partition the data using Xl based on a previous partitioning where BEST
selects Xj as the splitting variable and s as the splitting value.

s < t s > t
Region Xj < s Region Xj ≥ s Region Xj < s Region Xj ≥ s

Xl is available Yes No No No

Table 4.2: Availability of Xl if Xj is previously selected as splitting variable and s as splitting value

Doing so, predictors with missing values can be handled easily as BEST will partition the data
according to that predictor only in regions where it does not contain missing value. If a data set
contains missing values on predictor Xj but no predictor can help define the region with no missing
value, we can add a new predictor Xm+1 to the model as our gating variable. This new predictor is a
dummy variable such that Xi,m+1 = 0 if Xi,j is missing and 1 if not. Doing so, we effectively add Mj as
defined in Section 4.2, as a predictor in the model and thus will be defined as follows in the rest of the
text. Then, BEST will only consider splitting on Xj in the subspace defined by Mj = 1 as illustrated
in Figure 4.2. Multiple dummy variables are added to the model if multiple predictors contain missing
values. Doing so also allows us to analyse the importance of the missing pattern M .

Xj not available

Xj not available Xj available

Mj = 0 Mj = 1

Figure 4.2: An example of BEST decision tree partitioning upon the dummy variable Mj that defines
the availability of Xj

Chapter 4. BEST : A new decision tree algorithm that handles missing values 38

Finally, some insight on the data structure can be used to force some variable to be partitioned
upon before others which is another application of BEST not described in this chapter. The result is
a tree-structured classification model where some split variables are branch-exclusives. Even though we
do not further mention it, the construction described below could be used for regression trees as well.

4.3.3 Algorithm implementation

Let us now discuss the current implementation of BEST. BEST takes as input the full data set S, the
tuning parameter β and a list containing the predictor availability structure V . First S is set as the
root node, the first set of observations to go through the following steps. The algorithm verifies a set of
conditions before proceeding with the partitioning process. The first condition (C1) is that the region
contains more than β observations, this is the main stopping rule. Then, the next condition (C2) is
that the observations in the region have different labels; this condition makes sure that the algorithm
has a reason to partition the data. Finally, the last condition (C3) is that at least one of the available
predictors takes different values among the observations in the region; this is to guarantee that the
algorithm can actually partition the data.

If at least one condition is false, then the region is defined as a leaf (terminal node), a label is
assigned to that leaf for prediction purposes and the partitioning process is stopped. Usually the class
that represents the majority in a leaf is selected as the label for that region, but one could define different
label assignment rules.

If all conditions (C1, C2 and C3) are respected then the partitioning process begins. The algorithm
will go through all available predictors. For a predictor j, the algorithm will go through all possible
partitions s of the region with respect to the predictor j and will compute the total impurity of the
resulting two regions nr1Qr1 +nr2Qr2 . Any region impurity measure Q can be used. BEST then selects
the predictor j and the split s that minimize the total impurity and creates two children regions by
splitting the data according to s.

The last step is to update the list of available predictors for the children regions. There exist multiple
possible structures that can contain this information but within the R-language [118] we have settled
on a list V since lists are very flexible. However, any array-like structure could work and to further
optimize the speed of our package we could consider alternatives in the future. To begin V [1] represents
the set of predictors available for the partitioning process in the root node. More specifically V [1] is a
vector of size m where V [1][j] = 1 if the jth predictor is available to be split upon in the root node and
V [1][j] = 0 otherwise. For instance, for the data set introduced in Section 4.3.1, the vector V [1] equals
0 for all the Grade variables since they are not available for the partitioning process initially.

In the meanwhile, further elements of the list such as V [j+1] are defined for j ∈ 1, ...m and they con-
tain the necessary information to update the predictors available for further partitioning. If j is a gating
variable, then V [j + 1] should reflect that and contain the information needed to update the variable
available following a partitioning based on j. For instance, if j is a continuous predictor, V [j + 1] con-
tains a threshold value and a list of variables that becomes available given the appropriate partitioning.
For instance, in the example introduced in Section 4.3.1, each Number of credits is associated with the
threshold value 0. When a partition on a Number of credits variable happens, the partition containing

Chapter 4. BEST : A new decision tree algorithm that handles missing values 39

the observations where the Number of credits is strictly greater than 0 gain access to the corresponding
Grade variable as illustrated in Figure 4.9.

Here is a pseudo-code of the proposed algorithm :

Algorithm 5 : BESTree(S,β,V)
INPUT: Training set S, hyper-parameter β and availability list V .
0. Start with the entire data set S and the set of available predictors V [1].
1. Check conditions C1, C2 and C3.
2. if any condition is false :

Assign a label to the node and exit.
else :

for j in all available predictors:
for s in all possible splits:

Compute total impurity measure.
Select the variable j and the split s with minimum impurity measure.
Split the node into two child nodes.
Update the available predictors for both children nodes using V [j + 1].
Repeat steps 1 & 2 on the two children nodes.

OUTPUT: Fitted BESTree

The resulting tree can be pruned and as mentioned earlier can be constructed with any splitting
rule, any stopping rule and any label assignment rule. Since one of the goals of this new algorithm is
to produce accurate but also interpretable models we did not discuss forests so far, but the proposed
tree construction procedure can be used to build any type of forest as well. Our implementation is
publicly available on CRAN under the package named BESTree or on the first author’s website. Anyone
can download and install the package, read the vignette and use our proposed algorithm for their own
research.

4.3.4 Theoretical justification

Recall from Section 2.1, the loss of a classifier h is defined as

LD(h) = PD[h(x) ̸= y], (4.1)

which is the probability under the true data generating distribution D that the classifier h misclassifies
x. Since the data generating distribution D is unknown, then the empirical loss computed with the data
set S is typically used as an estimator of the true loss

LS(h) =
|{i ∈ [n] : h(xi) ̸= yi}|

n
, (4.2)

which is the proportion of misclassified observations in the training set S. Usually a set of classifiers H is
selected in advance and most learning algorithms are trying to identify the classifier h ∈ H that minimizes
the empirical loss LS(h). The set H was named the hypothesis class by Shai & Shai [133]. The true

Chapter 4. BEST : A new decision tree algorithm that handles missing values 40

loss can be decomposed in a manner to observe a bias-complexity tradeoff. Suppose hS = argmin
h∈H

LS(h),

then

LD(hS) = min
h∈H

LD(h) + (LD(hS)− min
h∈H

LD(h)).

= eapp(H) + eest(hS).
(4.3)

The approximation error, min
h∈H

LD(h) = eapp, is the minimum achievable loss within the hypothesis
class. The second term , (LD(hS) − min

h∈H
LD(h)) = eest, is the estimation error and is caused by the

use of the empirical loss instead of the true loss when selecting the best classifier h. Since the goal
is to minimize the total loss a natural tradeoff emerges from equation 4.3. A vast, large and complex
hypothesis class H leads to a wider choice of functions and therefore reduces eapp, but the classifier is
more prone to overfitting, which increases eest. Inversely, a small hypothesis class H reduces eest but
increases eapp.

Our proposed algorithm aims at obtaining a better classifier by restricting the hypothesis class to a
smaller one without increasing the approximation error. Though there is a bit of wishful thinking, we
hope to effectively reduce the estimation error more than we increase the approximation error.

Suppose HT is defined as the set of all tree-structured classifiers. Then, BEST is a new algorithm
that aims to find the best classifier in a new hypothesis class HB that contains all the tree-structured
classifiers that respect a set of conditions regarding the order that variables can be partitioned upon.
Therefore, we have HB ⊂ HT (R1). Because the complexity of HB is smaller than the complexity of
HT the estimation error of BEST is smaller.

Next, let us take a look at the approximation error : min
h∈HB

LD(h). When using BEST, we make
multiple assumptions on how the partitioning should be processed. For example, we assume it is better
to partition the data using the missing indicator Mj before partitioning the data using Xj . Rigorously
speaking, BEST rest on the assumption that the best tree-structured classifier among all classification
tree HT is contained within the set of tree-structured classifiers that respect the partition ordering
defined when using BEST: HB . In other words, we assume argmin

h∈HT

LD(h) ∈ HB (R2). Suppose S is a

data set, hS(HT) is the classifier that minimizes the empirical loss on HT and hS(HB) is the classifier
that minimizes the empirical loss on HB , then

LD(hS(HT)) = min
h∈HT

LD(h) + eest(hS(HT)).

= min
h∈HB

LD(h) + eest(hS(HT)). by (R2)

≥ min
h∈HB

LD(h) + eest(hS(HB)). by (R1)

= LD(hS(HB)),

(4.4)

which implies that the under the assumption we have made, not only we would manage missing values
but also reduce the loss. If our assumption argmin

h∈HT

LD(h) ∈ HB is false, then we might increase the

loss. Since the assumption itself is impossible to verify, the behaviour of the algorithm under multiple
scenarios will be tested in Section 4.5 with simulated data.

Chapter 4. BEST : A new decision tree algorithm that handles missing values 41

4.4 Related work
Decision trees are well-established and a wide variety of solutions has already been proposed to handle
missing values. In this section, we position our contribution within the current literature. We briefly
introduce the current missing value techniques that are paired with decision trees and we establish the
main differences between these techniques and the proposed algorithm introduced in Section 4.3. To do
so, we use recent surveys [129, 146, 39, 51] that defined and compared these techniques using various
simulated and real data sets.

Predictive value imputation (PVI) methods are popular approaches to deal with missing values.
They estimate and impute the missing values within both the training and the test set. The simplest
imputation consists of replacing the missing values with the mean for numerical predictors or the mode
for categorical predictors. More advanced prediction models have also been proposed, such as linear
model, k-nearest neighbours or expectation-maximization (EM).

Since these methods use known predictors to impute values for the missing ones, if the predictors are
uncorrelated these approaches have no predictive power. This leads to poor imputations and it is a major
drawback noted by Saar-Tsechansky and Provost [129] and Gavankar [51]. Nonetheless, Twala [146]
demonstrated using simulated data sets the great performances of expectation-maximization multiple
imputations (EMMI) [131]. This imputation technique produces multiple different imputations based
on expectation-maximization and then aggregates the results.

Our proposed algorithm differs from imputation methods as it only uses known information to build
the classifier instead of using potentially unreliable prediction to replace missing values.

The surrogate variable (SV) approach [22] is a special case of predictive value imputation. As
explained by Hastie et al. [61], during the training process, when considering a predictor for a split, only
the observations for which that predictor is not missing are used. After the primary predictor and split
point have been selected, a list of surrogate predictors and split points is constructed. The first surrogate
split is the predictor and split point pair that best mimic the split of the training data achieved by the
primary split. Then the second surrogate split is determined among the leftovers predictors and so on.
When splitting the training set during the tree-building procedure or when sending and observation
down the tree during prediction, the surrogate splits are used in order if the primary splitting predictor
value is missing.

Many articles [45, 129, 146, 39] showed that the results are not satisfactory in many cases and Kim
and Loh [82] noted the variable selection biased caused by this approach. Our proposed approach is
much more computationally efficient and utilizes the missing pattern as a predictor instead of ignoring
it.

Reduced-feature models are suggested by Saar [129] when missing values appear only in the prediction
process. When we need to classify a new observation, a tree is built using only the known predictors of
the new observation. If multiple observations contain different missing pattern then multiple trees are
built to classify the various observations. It shares a great deal of similarities with lazy decision trees
[50] as both models tailor a classifier to a specific observation and uses only known predictors to do so.

Chapter 4. BEST : A new decision tree algorithm that handles missing values 42

A major drawback of this technique is that it only manages missing values during prediction while
our proposed technique can handle missing value for both training and prediction. BEST also differs
from reduced-feature models as it not only uses the known values but also utilizes the fact that we know
some predictors are missing instead of discarding this information.

The popular C4.5 implementation [117] has its own way to manage missing data, defined as a
distribution-based imputation (DBI). When selecting the predictor to split upon, only the observations
with known values are considered. After choosing the best predictor to split upon, observations with
known values are split as usual. Observations with unknown values are distributed among the two child
nodes proportionately to the split on observed values. Similarly, for prediction, a new test observation
with missing value is split into branches according to the portions of training example falling into those
branches. The prediction is then based upon a weighted predictions among possible leaves.

This technique is computationally slow and offers poor performances in terms of prediction accuracy
according to some of the surveys we mentioned [129, 147]. Our technique should be faster, more accurate
and more interpretable.

As described by Ding and Simonoff [39], the Separate Class (SC) method replaces the missing value
with a new value or a new class for all missing observations. For categorical predictors we can simply
define missing value as a category on its own and for continuous predictors any value out of the interval
of observed value can be used.

This technique has the best performances according to Ding and Simonoff [39] when there are missing
values in both the training and the test set and when observations are missing not at random (MNAR).
Twala et al. [147] also came up with similar results with a generalization of the separate class method
coined Missing Incorporated in Attribute (MIA). These techniques are by far the closest in spirit to
BEST. As BEST, MIA and SC allow for similar data partitioning we do not expect BEST to offer a
drastic improvement in terms of accuracy. On the other hand, BEST identifies the missing pattern
using other predictors rather than including the missingness information within the predictor containing
missing values. Doing so, our approach should offer more interpretable results and a more accurate
variable importance analysis.

Finally, there exist many other articles discussing decision trees in the context of missing values.
Some introduce ways to use decision trees and random forests as missing values imputation techniques
such as Rahman and Islam [119] and others to identify the missingness structure such as Tierney et al.
[142]. Our approach is different since we are not using decision trees to pre-process data with missing
value or to identify the missingness structure but to perform a decision tree analysis of a data set that
contains missing values.

4.5 Experiments : Simulated data sets
We now assess the abilities of our algorithm on simulated data sets. All of our experiments are done using
the R-language [118]. In the following set of simulations, we will compare 6 methods; (1) BEST, our
proposed approach, (2) the Distribution Based Imputation (DBI) proposed by Quinlan [117] implemented

Chapter 4. BEST : A new decision tree algorithm that handles missing values 43

1 2 3 4 5 6 7 8

X1 = 0

X2 = 0 X2 = 1

X1 = 1

X4 ≤ 0.3 X4 > 0.3

X4 < 0.7 X4 ≥ 0.7 X3 < 0.6 X3 ≥ 0.6 X2 = 0 X2 = 1 X3 ≤ 0.2 X3 > 0.2

Figure 4.3: The decision tree used to generate our simulation data sets

in the C5.0 package [90], (3) a simple single variable imputation (SVI), either the mode for a categorical
predictor or the mean for a numerical one, (4) a refined predictive value imputation (PVI) using known
predictors; EM for numerical predictors and multinomial logistic regression for categorical ones [149], (5)
the separate class (SC) approach and finally (6) the surrogate variable technique introduced by Breiman
et al. [22] implemented in the rpart package [141]. Since the Reduced-Feature Model was the least
accurate in every single experiment we have done, we decided not to include it in the following plots to
improve readability.

We will generate data sets containing 4 predictors; X1 and X2 are binary predictors and X3 and X4

are continuous predictors on (0, 1). The response is categorical and can take up to 8 different values.
The binary predictors are generated according to a Bernoulli distribution and the continuous predictors
are generated according to a Uniform distribution. The response labels are assigned according to the
tree in Figure 4.3 but a proportion of the responses labels are randomly assigned.

Let us describe the experimental procedure. We begin by generating a data set as we described in the
previous paragraph and we apply a missing pattern to the data set; details are included in the respective
subsections. Then we fit a pruned decision tree using each of the six methods mentioned earlier in
the section. We experiments with various parameters such as the number of training observations, the
variable containing missing values and the type of missing patterns. Finally, we compare the technique
performances using the prediction accuracy on the test set where the accuracy is defined as the proportion
of correctly classified observations.

4.5.1 MAR : Missingness depends on observed predictors

This first experimental set up is meant to test the missing pattern structure BEST is designed for. In
this set up, the missing pattern of a predictor is fully explained by another, fully observed, predictor.
The binary predictor X1 was designated as gating variable for a randomly sampled predictor, either X2,

Chapter 4. BEST : A new decision tree algorithm that handles missing values 44

X3 or X4. In our first experiment we randomly sample either 0 or 1 and the gated variable is missing if
X1 equals the randomly sampled value. This procedure is repeated 200 times for this experiment.

We present our results using Sina Plots [134, 152]. This allows to better visualize the distribution of
the performances of the different techniques.

Figure 4.4a contains the results of our simulation using 200 training observations to build the classi-
fiers. Figure 4.4b contains the results of our simulation obtained when using 1000 training observations.

Both of the plots convey similar information. When the missing pattern depends on other predictors,
the performance of BEST is similar to many competitors. However, BEST leads to more interpretable
decision trees and does not require any imputation. There is no notable differences between the results
obtained with 200 training observations and 1000 training observations in that experiment. Going
forward, we keep the number of training observations fixed to 200 but we vary other parameters.

In the next experiment we once again designate X1 as the gating variable, sample one of the other
predictors as the gated predictor and randomly sample either 0 or 1 to gate the randomly selected
predictor. However, this time we generate a less extreme missing pattern. The gated variable will be
missing with a probability of 50% when X1 equals the randomly sampled value.

We can observe in Figure 4.4c that a less extreme missing pattern does not affect one technique more
than others. Overall, BEST accuracy when the data is missing at random given other predictors is as
good as other tested techniques. This is very positive considering BEST does nto require any special
pre-processing which makes it easier to use than its counterpart.

4.5.2 MNAR : Missingness depends on missing values

Let us now proceed with an experiment where predictors are missing not at random. If a continuous
predictor, let us say Xj , is randomly selected, then a random value t is drawn at random within the
domain of Xj and serves as a threshold value. Finally, a Bernoulli variable b is drawn and if b = 0, then
if Xj < t Xj is set missing, otherwise if b = 1 then Xj is missing if Xj ≥ t.

If one of the binary predictors is selected, then a Bernoulli variable is drawn and Xj is missing if
Xj equals the Bernoulli variable. Since the missingness of Xj depends on the value of Xj itself, this is
considered MNAR. This procedure is repeated 100 times.

In Figure 4.4d we observe that BEST outperforms DBI and multiple imputations. The performances
of BEST are comparable to those of SVI but are slightly lower those of the SC approach.

4.5.3 MAR : Missingness depends on the response

According to Ding et al. [39], the relationship between the missing pattern and the response variable
has a great effect on the results obtained from different missing value treatments.

In this simulation, one of the predictors is randomly selected, let us say Xj , every iteration and the
censoring process is then applied. The censoring process goes as follows; one of the eight response labels

Chapter 4. BEST : A new decision tree algorithm that handles missing values 45

0.2

0.4

0.6

0.8

1.0

BEST DBI(C5.0) SVI EM/Pol SC Surrogate
Techniques

A
cc

ur
ac

y

(a) Missing pattern depends on other predictors (200
training observations)

0.2

0.4

0.6

0.8

1.0

BEST DBI(C5.0) SVI EM/Pol SC Surrogate
Techniques

A
cc

ur
ac

y

(b) Missing pattern depends on other predictors (1000
training observations)

0.2

0.4

0.6

0.8

1.0

BEST DBI(C5.0) SVI EM/Pol SC Surrogate
Techniques

A
cc

ur
ac

y

(c) Half of the gated variable missing

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Best DBI(C5.0) SVI EM/Pol SC Surrogate
Techniques

A
c
c
u

ra
c
y

(d) Missing pattern depends on missing values

Figure 4.4: Prediction accuracy for different techniques under different experimental set up.

Chapter 4. BEST : A new decision tree algorithm that handles missing values 46

0.3

0.4

0.5

0.6

0.7

Best DBI DBI+ SVI SVI+ EM EM+ SC Surr Surr+
Techniques

A
cc

ur
ac

y

Figure 4.5: Accuracy by techniques when the missing pattern depends on the response.

is randomly selected, and Xj is missing for all observations with that selected label. In this experiment
we have used a dummy variable as the gating variable for the BEST algorithm. This procedure will be
repeated 100 times for this experiment.

In this experiment, the missing pattern is actually a variable with predictive power and therefore,
models like BEST and SC shine as they utilize the fact that there is missing values instead of trying to
impute them. BEST and SC approaches have similar results and their performances is higher than any
other techniques as seen in Figure 4.5.

First, we noticed the high performances of the simple single value imputation in some cases; it
performs well if the predictor with missing value is continuous. Our experiments reveals that when the
predictor containing missing value is continuous, replacing missing values with the mean is equivalent
to creating a separate class because only the missing values will exactly take the value of the mean. If
the predictor with missing value is categorical, replacing missing values with the mode will make the
observation with missing value undistinguishable from observations that truly belong to that class which
leads to the poor results.

We also wanted to understand the impact of the indicator gating variable on the success of BEST.
To do so, we added the indicator variable to the data set and we applied the various missing value
techniques as well on top. Those are identified with the plus (+) sign.

In Figure 4.5 we can see that the indicator variable is important if the missingness depends on the
response variable. The plus sign represents the result obtained by the technique with a data set that

Chapter 4. BEST : A new decision tree algorithm that handles missing values 47

Data X1 X2 X3 X4 M2

Complete 112.37705 26.76542 158.55069 102.91328 -
BEST 94.53228 10.80073 155.39201 78.14924 156.27593

SC 103.62706 171.70715 147.89474 80.51999 -
SC+. 94.36789 81.83499 128.78712 55.14764 84.45193

Table 4.3: Variable Importance table computed using the GINI decrease importance

also includes the indicator variable. For example, for SVI+, we both imputed the missing values using
SVI and we included the indicator variable in the data set. Adding this variable to the data set lead to
improved performances for all of the tested techniques. BEST offers great results considering it does not
need to impute the missing values nor any other data pre-processing. If the missing indicator variable
is to be added to the data set, it is counter-intuitive to also impute missing values. We argue in Section
4.6.3 that BEST also produces trees that are more interpretable and that BEST leads to a more reliable
variable importance analysis than other algorithms. For those reasons, we believe BEST is the best
approach when the pattern is missing at random given the response.

4.5.4 Random forests and variable importance

Let us now build a small example where random forests are used to analyse the variable importance.
Random forests are popular in exploratory analysis [139] as the variable importance tools developed for
this model became quite popular.

As seen in the previous experiments, when BEST performs well, so does the SC approach usually
since both of these techniques lead similar trees. In this section we quickly discuss how BEST produces
more accurate variable importance computations than the SC approach. We created an example where
the missing pattern depends on the response, used either the SC approach or BEST to handle missing
values and built a forest with those trees.

When the values for a predictor are conditionally missing at random given the response, the miss-
ing pattern is itself a good predictor. We believe it is important that a variable importance analysis
distinguishes between the importance of the predictor with missing value, say Xj , from the importance
of its missing pattern Mj . A random forest of trees built under the SC approach fails to distinguish
between the effect of the observed values of the predictor from the effect of the missing pattern. Since
BEST actually uses a variable to define the region with missing values, either with another predictor or
a user-created dummy variable, then this gating variable importance will better represent the predictive
power of the missing pattern.

We built a random forest using the complete data set and computed the GINI decrease importance.
Then we have randomly selected one of the eight labels, and the predictor X2, a predictor of low
importance according to the GINI decreases under the complete data set, is rendered missing depending
on the value of the response. Since the SC approach uses the predictor containing missing value to identify
observations containing missing value then it identifies X2 as the most important predictor. Since we
built this problem we know X2 is an unimportant predictor, this is also support by the complete data
variable importance. It is actually the missing pattern M2 that contribute to the model performance. We

Chapter 4. BEST : A new decision tree algorithm that handles missing values 48

included the missing pattern M2 to the data set and used the SC approach again (SC+). Unfortunately,
the SC approach still grossly overestimate the true importance of the predictor X2.

Using BEST, we can easily observe that the missing pattern, M2 is the important predictor and
that X2 is actually of low importance when observed as it should be according to the complete data
variable importance. We believe the variable importance analysis produced by BEST better reflects the
true predictive power of the various predictors and this is a great benefit from using BEST over the SC
approach.

4.5.5 Simulations: takeaways and limitations

Throughout various simulation experiments we have been able to highlight the success of BEST under
various scenarios. Since the SC approach does not impute the missing values then it can create parti-
tioning similar from those created by BEST. However, the SC approach does not need to first isolate the
missing value in order to partition upon the variable containing missing values which can sometimes be
valuable. On the other hand, we have argued that BEST produces a variably importance that is more
accurate than its SC counterpart. We also elaborate in a later section that BEST produces trees that
are more interpretable.

Our simulation also revealed that BEST suffers from a weakness when the gating variable is of low
importance. This can happen if only a small proportion of data is missing, if the missing pattern is
simply non-informative or in some cases when data is MCAR. In those cases, BEST will rarely partition
upon the gating variable and thus will struggle to partition upon the gated variables which will almost
surely reduce the accuracy of the resulting tree. This weakness is intrinsic to the algorithm as it is
caused by the greedy nature of decision trees which are usually fitted by growing large trees and pruning
them later. During the partitioning process, a classic decision tree approach only sees the reduction in
impurity gained with a single partition and thus cannot perceive the accuracy gained by the combination
of two successive partitioning.

Building a random forest of BEST trees instead of using a single tree could alleviate that problem.
When we build trees in a forest, predictors are randomly selected and thus the algorithm will partition
on the gating variable of low important from time to time which will reveal the important gated variable.
Another way to circumvent this limitation would be to consider pairs of consecutive splits but this would
come at a great cost; this would drastically increase the run time of the algorithm.

Another perspective on this issue is with respect to the splitting criteria. As of now, the splitting
criteria is one of a traditional decision trees, the criteria is meant to decrease the impurity of the response.
Consequently, it is passive towards missing patterns; the criteria is the same for gating variable and gated
variable. A suggestion we received from our external examiner is to consider a splitting criteria that
favour splits that improve availability of new predictors. This is an idea we would like to pursue in a
future project, the conclusion contains a few ideas on how to implement such criteria.

A limitation of our simulated experiments is the absence of the MIA algorithm [147] which shares a
lot of similarities with BEST. No implementation or package of MIA was available at the time we ran
this experiment and thus an advantage of BEST is that a R package is available for researcher looking

Chapter 4. BEST : A new decision tree algorithm that handles missing values 49

2.5

2.6

2.7

2.8

2.9

3.0

Best Decision Tree
Techniques

Se
co

nd
s

Figure 4.6: Run time of BEST compared to a decision tree.

for an algorithm ready to use off-the-shelf. Regarding prediction accuracy, we do not expect BEST to
outperform MIA as they can produce similar partitioning but we expect BEST to be slightly faster as
MIA greatly increases the number of operations when building the tree. Finally, as discuss earlier we do
believe BEST produces more interpretable trees than the SC approach, the same argument holds when
comparing BEST to MIA. The interpretability argument is expanded in Section 4.6.3.

Finally, another limitation of our experiment is that we did not test the run times of the algorithms
in an extensive manner. We think there was no way to build a fair comparison among the various
techniques. As it stands our package BESTree is entirely coded in R and thus currently runs more
slowly than than popular decision tree packages such as the C5.0 package [90], the rpart package [141]
or the party package [65].

We believe that the speed difference is caused by our suboptimal coding and the language used but
not by the structure of our proposed algorithm. Our BESTree package contains a regular decision tree
function which shares most of its architecture with the BEST function but without the new functionalities
introduced by BEST. We tested the run speed of our proposed algorithm BEST against the regular
decision algorithm included in our package.

We generated 200 samples of 5000 observations and computed the run time in seconds needed to fit
both BEST and a regular decision tree algorithm. As observed in Figure 4.6, our intuition was right;
the added functionality of BEST does not increase the run time significantly. In order to improve the
run time of all functions in our package, we plan on coding some key components in a faster language
such as C++ in a future release.

Chapter 4. BEST : A new decision tree algorithm that handles missing values 50

of obs 5000 10000 15000 20000
Methods Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DBI 0.7223 0.0035 0.7336 0.0038 0.7385 0.0092 0.7402 0.0095
SC 0.7307 0.0066 0.7387 0.0044 0.7427 0.0036 0.7462 0.0033

Surrogate 0.7291 0.0053 0.7301 0.0046 0.7311 0.0034 0.7300 0.0032
BEST 0.7333 0.0062 0.7424 0.0045 0.7457 0.0037 0.7479 0.0033

Table 4.4: Mean accuracy and standard deviation when predicting program completion

of obs 5000 10000 15000 20000
Methods Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DBI 0.3581 0.0055 0.376 0.0043 0.3871 0.0039 0.3936 0.0057
SC 0.3992 0.0079 0.4172 0.0069 0.4262 0.0047 0.4332 0.0044

Surrogate 0.3639 0.0121 0.3661 0.011 0.3723 0.012 0.3742 0.012
BEST 0.3952 0.0074 0.4164 0.0051 0.4265 0.0043 0.4319 0.0043

Table 4.5: Mean accuracy and standard deviation when predicting the major

4.6 Experiments : grades data set

4.6.1 Predicting program completion

The data set mentioned in Section 4.3.1 was analysed using BEST. Once again, the accuracy of the
proposed algorithm is compared to other techniques that handle missing values. To begin, we predict if
a student completes its program using its first year of courses and results. Then we predict the major
of those who completed a program. The data set contains 38842 observations. Our set of predictors
consists of the number of credits attempted in all the departments and the average grade obtained in
those respective departments. The number of credits is a numerical variable that serves as the gating
variable for the respective grade. If the number of credits attempted in a department is greater than 0
for every observation in a region then BEST acquires access to the grade variable. We have randomly
sampled training sets of different sizes and used all the remaining observations to assess the accuracy.
This process was repeated 15 times and we have averaged the results. We did not include the single
value imputation because we expect this technique to produce the same result as the SC approach since
all predictors are numerical. We did not include the imputation produced by the mice package [149] as
the package had issues with with our large data set. Finally, we used tables to show our results because
with only 15 trials the Sina plots were not informative.

In table 4.4, we observe that BEST produces the most accurate decision trees for that data set for
all training data sizes. This improvement is important as it is essential for universities to predict if a
student is at risk of not completing its program. This information is valuable since most universities
want to help their students move forward by adjusting their policies or providing them the resources
needed. We have done most of our experiments with trees, but using a random forest of BEST trees
the prediction accuracy reaches 79.89%, which is higher than anything previously obtained in chapter 3
with random forests made with traditional decision trees.

Chapter 4. BEST : A new decision tree algorithm that handles missing values 51

Another reason why we might prefer using BEST in this analysis is its ability to rightfully identify the
variable importance. As we discussed in chapter 3 we were interested in the importance of the predictors.
Therefore BEST is an improvement as it truly identifies the importance of the gating variables, the
number of credits, as we have shown in Section 4.5.4. In this case we were able to distinguish the
importance of the number of credits in a department from the importance of the grade obtained in that
department which was impossible before the implementation of BEST. Figure 4.7 contains the variable
importance plots for both research questions.

Figure 4.7a illustrates the results obtained when we evaluated the variable importance using the
averaged GINI decrease based on a forest of 200 BEST trees. The results are quite different from what
we previously obtained in chapter 3. It does seems like overall the number of credit is the most important
variable though the important departments are mostly the same; ASSEM, MAT, ECO, ENG, CHM were
previously deemed important and still are. The number of credits attempted in the first year seminar
courses (ASSEM) is the most important predictor. In this case, taking a first-year seminar course was
positively correlated with succeeding an undergraduate program. These seminars were brand new at the
University at the time the data was collected and this analysis provides evidence of the merit of these
courses to establish a student’s profile.

4.6.2 Predicting the major

In the second analysis, we look at the 26488 students who completed their program. Using the same
set of explanatory variables, we predict the department they majored in. Predicting the major that will
be completed by students can help Universities plan ahead the resources needed by each departments.
According to the results in table 4.5 BEST can accurately produce such predictions.

In table 4.5 we observe closer results from the two best-performing algorithms. BEST and SC have
almost indistinguishable performances and are the top performers. A random forest of BEST trees
reaches an accuracy of 47.57% which is slightly higher than previously obtained results in chapter 3.
Even though the results are a lot closer between BEST and SC, our proposed algorithm produces trees
that are more interpretable and can be used to produce a non-biased variable importance analysis as
argued in Section 4.5.4.

Figure 4.7b contains the variable importance we obtained. In this particular case the results were
not significantly different from those previously obtained though once again we observe a slight drop in
importance of the grades variables. The number of credits in the Finance department (COMPG) and
the number of credits in the English department (ENG) have relatively high importance compared to
all the other predictors. We observed that the students who obtained a major in either of those were
very likely to register to many courses in these respective departments starting in the first year. The
number of credits in the Mathematics department (MAT) and the number of credits in the Computer
Science department (CSC) are also of noticeably high importance. We have noticed that these variables
are quite useful to predict if a student picks a major in a scientific field.

4.6.3 Improved interpretability

We mention throughout this chapter that BEST leads to more interpretable decision trees than the SC
approach. Let us now demonstrate this with the grade data set. It provides a good example.

Chapter 4. BEST : A new decision tree algorithm that handles missing values 52

MAT G

AST

VIC

ANT

NUSCI

PHL

PHY

SOC

CSC

COMPG

ZOO

STAT

PSY

POL

HIS

CHM

ENG

ECO

MAT

ASSEM

Averaged GINI decrease

0

10
0

20
0

30
0

40
0

50
0

(a) Predicting program completion.

COMPG G

FRE

PHL

PHY

EAS

STAT

ANT

SOC

FAR

CHM

ZOO

GGR

PSY

HIS

POL

ECO

CSC

MAT

ENG

COMPG

Averaged GINI decrease

0

20
0

40
0

60
0

80
0

10
00

(b) Predicting the major completed.

Figure 4.7: Variable importance plots .

Chapter 4. BEST : A new decision tree algorithm that handles missing values 53

All students

Students with grade
below 60 in Math

Students with grade
above 60 in Math and
students that took no

Math course.

Grade in Math < 60 Grade in Math ≥ 60

(a) An illustration of a decision tree partitioning produced by the SC approach and the associated regions.

All students

Students who took
no Math course

Students who took
at least one Math

course

Students with
grades in Math

below 60

Student with
grades in Math

above 60

Credits in Math = 0 Credits in Math ≥ 1

Grade in Math < 60 Grade in Math ≥ 60

(b) An illustration of a decision tree partitioning produced by BEST and the associated regions.

Figure 4.8: Illustration of BEST’s improved interpretability.

For the SC approach we have replaced missing grades by a value outside of the domain, 101. Fre-
quently in our experiments, the tree constructed under the SC approach partitions upon the grade in
departments before the number of credits in the same department. For example, if Grades in Mathemat-
ics is the first split variable selected and 60 is selected as the split point, then the SC approach produces
the partitioning illustrated in Figure 4.8a.

It is hard to extract interpretable information out of the tree in Figure 4.8a. Does this partition
imply students with no experience in Mathematics behave similarly to students with good results in
Mathematics ? BEST achieves higher accuracy while keeping the partitions logical and interpretable.
BEST begins by partitioning students who attempted at least 1 credit in Mathematics from those who
did not. Then, among students who attempted at least 1 credit in Mathematics, BEST will partition
them according to their grades, which leads to a more interpretable sequence of partitions as illustrated
in Figure 4.8b. More partitions are needed for similar data partitioning but the produces trees are much
more interpretable. To sum up, BEST leads to more interpretable trees then its closest competitor in
terms of classification performance, the SC approach.

That being said, BEST produces trees as large as any decision tree algorithms because the stopping
rule is the same. Thus, in some cases they might be so large that it is impossible to look at the entire
tree to interpret the classification mechanism. In the experiments of Sections 4.6.1 and 4.6.2 the trees

Chapter 4. BEST : A new decision tree algorithm that handles missing values 54

produced are rather big, containing on average 150 terminal nodes. In those cases it is possible to look
at the first few splits to understand some global partitioning rules that were applied to large amount
of data. In the experiments of the previous section, the majority of the fitted trees shared the first
few levels. We included in the appendix the first 4 levels of a tree obtained when predicting program
completion.

4.6.4 Real-world data set experiment takeaways

Even though we experimented on a single real-world data, the results are extremely positive. BEST has
higher or similar performance than the other tested algorithms. BEST produces more accurate variable
importance analysis and more interpretable trees than the SC approach, BEST’s closest competitor.
Finally, to use BEST we did not need to do any imputations beforehand which is another reason why
we prefer BEST.

4.7 Conclusion
We have constructed a modified tree-building algorithm that lets the users decide the regions of the
predictor space where variables are available for the data partitioning process. We explained how to
use this feature to manage missing values. BEST has the elegant property of analysing a variable only
when values are known without assuming any missingness structure. It produces highly interpretable
trees and achieves comparable accuracy to most missing value handling techniques in cases we have
identified using simulated data sets. Even though BEST shares similarities with the separate class
technique, BEST leads to a more accurate variable importance analysis and produces more interpretable
and intuitive trees.

BEST suffers from a weakness when the gating variable has no predictive power. In those cases,
the algorithm never chooses to split upon the gating variable and thus is never allowed to use the
branch-exclusive variable. In a future project, we would like to implement a new splitting criteria that
favour splits on gating variables. One way to do so would be to weight the criteria of a split by the
number of observations for which additional predictors would be available given that split. Doing so
would not only favour splits on gating variable, generally speaking, but would also favour splits closer
to the threshold value and favour splits on gating variables more strongly earlier than later during the
partitioning process.

In the simulated experiments we have performed, results were mostly positive as BEST outperforms
some other techniques when data is MAR and MNAR. The results produced by BEST were also impres-
sive when the algorithm was used on the real motivating grades data set. We achieved higher accuracy
than with most other techniques while obtaining a more interpretable classifier. Since variable impor-
tance is a concern in the grades data set analysis, BEST is an improvement as it answers that research
question by providing a more reliable variable importance analysis than the separate class approach
previously used in chapter 3.

Chapters 3 and 4 discussed how we were first introduced to machine learning, with well-established
algorithms such as decision trees and random forests. We explored these models from an applied and a

Chapter 4. BEST : A new decision tree algorithm that handles missing values 55

theoretical perspective by completing a data analysis and releasing an new algorithm of our own. In the
following chapters we explore more recent models.

Appendix

Chapter 4. BEST : A new decision tree algorithm that handles missing values 56

1

1

1

0
1

1

1
1

1

1

1
1

0

0
0

C
r

M
AT

≤
0.
5

C
r

M
AT

>
0.
5

C
r

A
SS

EM
=

0
C

r
A

SS
EM

≥
0.
5

C
r

ST
AT

≤
1.
5

C
r

ST
AT

>
1.
5

C
r

H
IS

≤
0.
5

C
r

H
IS

>
0.
5

G
r

A
SS

EM
≤

67
.5

G
r

A
SS

EM
>

67
.5

C
r

EE
B

=
0

C
r

EE
B

≥
0.
5

C
r

C
SC

=
0

C
r

C
SC

≥
0
.5

Fi
gu

re
4.

9:
U

pp
er

pa
rt

of
a

BE
ST

de
ci

sio
n

tr
ee

w
he

n
pr

ed
ic

tin
g

pr
og

ra
m

co
m

pl
et

io
n.

Chapter 5

Variational Autoencoders: theory
and implementations

In this short chapter, we discuss the differences between the theoretical model and common implemen-
tations of VAEs. Those differences are there for a reason; they fix some problems that appear when
implementing a VAE in its simplest form. First, we define the simple VAE and we provide a visualization
of the problems this model suffers from. Second, we demonstrate empirically that common implemen-
tations manage to circumvent these problems. Third, we argue why these modifications empirically
benefit the simple VAE based on the literature. Fourth, we demonstrate how these implementations
do not respect the theory and why this is a problem. Finally, we propose potential solutions to those
issues which would lead to an updated theory along with concordant implementations. However, those
solutions have not been tested yet; we are demonstrating the existence of this gap between the theory
and implementations to begin. In other words, only the first three steps of this project are completed
at the moment of writing the thesis.

This chapter is not based on a published or submitted research paper yet; it is based on work that
has begun a few years back and that is still ongoing. We are currently working on adapting the content
of this chapter into publishable work. This chapter contains background information and observations
we will refer to in the chapters that follow.

5.1 The simple variational autoencoder
In this section we define what we refer as the simple VAE in this chapter. It is actually the VAE model
introduced as an example in section 2.2.3. We use this model to illustrate the difference between what
was theoretically proposed and the common implementations.

The model is composed of a set of observed variables, which are identified as x and a set of unobserved
latent variables, identified as z. We assume p(z) to be N(0, I) and that x|z ∼ N(µx, σx). We also suppose
that the dimension of z is d which is much lower than the dimension of x, m.

Furthermore, in this model the parameters of the observed distribution ((µx, σx)) are continuous
functions of the latent variable z; θ = [µx, σx] = fx(z), to use a short notation, we identify µx(z) as the

57

Chapter 5. Variational Autoencoders: theory and implementations 58

function that takes z as input and return the parameters µx associated with this value and same for
σx(z) or simply θ(z) : Rd → Rm × Rm

+ .

To ensure that this link function is as flexible as possible, a NN is used; θ(z) is a NN. It allows for
a maximum amount of flexibility but in turn makes the posterior of the latent pθ(z|x) intractable and
consequently the EM algorithm cannot be used. The proposed solution is to approximate pθ(z|x) with
qφ(z|x) a distribution of our choice.

For this simple variational autoencoder we will use a normal distribution: z|x ∼ N(µz, σ
2
z). Here

again the parameters µz and σz are function of x: φ = [µz, σz] = fz(x) or φ(x) : Rm → Rd × Rd
+. This

function is once again a NN.

The simple VAE model is graphically represented as follows :

z

x

Figure 5.1: A graphical representation of the VAE architecture.

In Figure 5.1 the upward arrow represents the generative model (p) and the downward arrow repre-
sents the discriminative model (q) or inference network. Though not very useful now, it is practical for
more complex model to separate both networks:

z

x

(a) The generative model assumes pθ(x, z) =
pθ(z)pθ(x|z).

z

x

(b) The inference model. Given observations x we can
infer the latent variable using qφ(z|x).

5.1.1 Maximization of the ELBO

As previously mentioned in chapter 2, because it is impossible to compute the posterior distribution of
the latent pθ(z|x) we cannot compute Epθ(z|x)[ln pθ(z,x)] and thus EM is not a viable solution here. The
proposed solution is variational inference: we replace pθ(z|x) with an approximate distribution qφ(z|x)

Chapter 5. Variational Autoencoders: theory and implementations 59

and attempt to maximize the ELBO

L(φ, θ) = Eqφ(z|x) [ln pθ(z) + ln pθ(x|z)− ln qφ(z|x)] .

The common strategy is to run a gradient-based optimizer on a Monte Carlo sample of the ELBO

ln pθ(z) + ln pθ(x|z)− ln qφ(z|x) z ∼ qφ(z|x),

where we draw a new Monte Carlo sample at every steps of the optimization. To discuss further the
current successful implementations, let us reorganize the terms in the ELBO

L(φ, θ) = Eqφ(z|x) [ln pθ(z) + ln pθ(x|z)− ln qφ(z|x)]

= Eqφ(z|x) [ln pθ(x|z)− (ln qφ(z|x)− ln pθ(z))]

= Eqφ(z|x) [ln pθ(x|z)]−Eqφ(z|x) [ln qφ(z|x)− ln pθ(z)] (5.1)

= Eqφ(z|x) [ln pθ(x|z)]
Reconstruction error

−KL (qφ(z|x)|pθ(z))
Regularization term

.

It is common to perceive the ELBO with respect to those two terms. We can see this as a regularized
optimization problem where we want to maximize the first term, the observed-data likelihood, and where
the second term works as penalization that discourages qφ(z|x) from drifting far away from a N(0, I)

which represents the effect of the prior with a Bayesian flavour.

5.1.2 Practical uses

Dimensionality reduction and representation learning

A VAE is an unsupervised learning model like k-means clustering, GMM or Principal Component Analy-
sis (PCA). Just like these other techniques, VAE can be used for dimensionality reduction. If the code z

is a of much lower dimension, given the fitted encoding function φ and decoding function θ we can easily
encode large observations x into the parameters of their lower-dimension representation z and also de-
code this representation to get the parameters of the reconstructed observation distribution. In contrast
to k-means or PCA, VAE offers a probabilistic dimensionality reduction rather than a deterministic one
which is similar to what GMM or pPCA offers in that aspect.

Dimensionality reduction is very useful for storage purposes or message transmission. A VAE can be
directly used for lossy compression where z is the compressed representation x. VAEs can also be used
as building blocks in more complex compression schemes, for instance Townsend et al. [145] constructed
a lossless compression algorithm (BB-ANS) using VAEs. Besides, it is also quite common to apply
supervised learning techniques to the latent representation itself, as discussed later.

Manifold learning is often a synonym of non-linear dimensionality reduction and in the context
of machine learning is often viewed as a feature extraction step. Furthermore, the lower-dimension
representation itself can be analysed sometimes [86, 114, 121, 83] to visualize the compression process.
Since compression functions are continuous, it also allows us to better understand distances in the
high-dimensional space X .

Chapter 5. Variational Autoencoders: theory and implementations 60

Generator

A VAE is a generative model [83]. Indeed, since a prior distribution is assumed for the latent variable, z ∼
N(0, I) we have a fully defined joint distribution pθ(x, z) and it is possible to generate new observations
using ancestral sampling. Ancestral sampling [15] is the generative procedure for graphical models.
The graphical representation of VAEs, a Bayesian network [88], represents a set of factorization and
conditional independence assumptions which induces a natural sequence of events. In the simple VAE
case the assumed factorization is :p(x, z) = p(z)p(x|z). This leads to the following ancestral sampling
procedure:

Algorithm 6: Ancestral Sampling with the simple VAE
INPUT: n desired size of the generated sample
1) Sample z from N(0, I).
2) Process z through the NNs θ to get µx(z) and σx(z).
3) Sample x from N(µx(z), σx(z)).
4) Return x
OUTPUT: a sample x of size n

Doing so allows us to generate new data points x according to its assumed distribution.

Semi-Supervised learning

VAEs can also be solutions to semi-supervised problems as was proposed by Kingma [85, 83] shortly
after the release of the introductory paper [86]. Various semi-supervised VAE models have been proposed
[85, 120, 107, 155]; and Rastgoufard [121] offers a thorough analysis of these models applied to various
semi-supervised tasks. Semi-supervision aims at learning the supervised relation between the observations
x and the labels y given a data set where multiple observations are not labelled. In other words,
given a standard labelled data set can we improve the classifier by incorporating additional unlabelled
observations ? It is quite an important problem since expert labelling is far more costly than the process
of collecting raw data [121].

Observations from different classes are likely to cluster in different regions of the latent representa-
tion. In other words, observations x attached to different labels y will probably have different latent
representation z. We can use the labelled observation to find an appropriate prediction function h that
takes z as input and return a predicted label ŷ. The strategy behind semi-supervised learning is to
leverage the large amount of unlabelled point to improve the encoding function qφ(z|x) thus improving
the classification mechanism.

In fact, the encoder q can be perceived as the feature-extraction step [153, 1, 122]; z ∼ q(z|x) is the
vector of features extracted from the image x and it is easier to classify observations using those features
than when using the original observations x. The classifier h is trained on the features z using labelled
data set Sl = {(xi, yi)|i ∈ 1..nl} but we can use the additional unlabelled data Su = {xj |j ∈ 1...nu} to
improve the feature extractor q.

Chapter 5. Variational Autoencoders: theory and implementations 61

5.2 Visualization of the simple VAE
In this section we demonstrate problems when implementing the simple VAE directly. The VAE and
it’s associated generative procedures are implemented in Python and we will use the well-known MNIST
data set [95] to visualize some of these problems. In hand-written document analysis, the MNIST data
set introduced by LeCun & al. [95] quickly became a benchmark for hand-written digits recognition and
is now a rite of passage for computer vision algorithms. It contains more than 60,000 images in shades
of grey of hand-written digits of size 28 by 28 pixels.

The following images and plots are visual supports for our arguments about the simple VAE prob-
lems. We produce plots and images that illustrates how VAE performs in tasks mentioned before;
compression and generation. Semi-supervised applications are left out for now, but VAEs limitations in
semi-supervision problems has been extensively studied in Rastgoufard’s thesis [121]. For compression
we look at the latent space and its associated reconstruction µx(z), possible if d = 2, as well as an
example of reconstruction to observe the loss incurred by the compression and decompression process.

(a) Observations x projected onto its latent representa-
tion using z ∼ N(µz(x), σz(x)).

(b) Decoded latent space using µx(z).

Figure 5.3: Latent space visualization of a simple VAE with latent space of dimension d = 2

Figure 5.4: Images x on the top row and its reconstruction µx(qφ(x)) on the bottom row produce from
a simple VAE with latent space of dimension d = 2

Figure 5.5: Images x on the top row and its reconstruction µx(qφ(x)) on the bottom row produce from
a simple VAE with latent space of dimension d = 20

Chapter 5. Variational Autoencoders: theory and implementations 62

Figures 5.4 and 5.5 contain images and their associated reconstruction. We see multiple imperfections,
blurry images and sometimes the reconstructed digit is a completely different digit. Of course, we do
expect to lose some details when reducing the dimension from 784 to 20, but we know NNs allows for
function complex enough and we hope to achieve better results than what is obtainable with PCA which
compresses the data with linear combination.

Figure 5.6: Examples of reconstruction produced by PCA included in Bishop’s book [15]. The image
to the left is a real image and other images are reconstruction with latent space of size d = 1, d = 10,
d = 50 and d = 250 respectively.

PCA uses simple linear combination for compression and decompression. However, it achieves re-
construction of similar quality with a latent space of size d = 10 (third image of Figure 5.6) than the
simple VAE with a latent space of size d = 20 who relies on NN as for compression and decompression.
This is a disappointment.

For generation, we use ancestral sampling to produce a sample of 64 images:

(a) d = 2 (b) d = 20

Figure 5.7: Sample obtained from the ancestral sampling described in the previous section.

Now we observe another major problem; the images generated are blurry, contains multiple imper-
fection and lack diversity. A human eye would judge harshly those images; they do not look like realistic
hand-written digits. As it stands, with an exact implementation of the simple VAE, the compression

Chapter 5. Variational Autoencoders: theory and implementations 63

and reconstruction abilities of such models are equivalent to PCA and the generated images are not
impressive. None of these problems are mentioned in the papers that originally presented this model
[86, 73]. For instance, here are the samples available in Kingma’s thesis [83] :

Figure 5.8: Snapshot of the result section of Kingma’s thesis.

It is unlikely that neither of the first authors did not encounter any of these problems. By avoiding
this discussion, it falls on the users to figure out how to implement the needed modifications and this
prevents the model to be used reliably on real-data problems as is.

5.3 Algorithmic solutions
As we observed in the previous section, a direct implementation of the simple VAE proposed in the
literature suffers from problems for both reconstruction and image generation. The figures of section 5.2
reveal some problems of the simple VAE. However figures much more flattering were published in articles
discussed above. To produce those images, some important modifications were done by researchers under
the hood of the proposed VAE of section 2.2.3, we will discuss those modifications in their respective
subsection.

In this section we explore successful implementations of VAEs and we highlight the differences be-
tween the simple VAE proposed and the common implementations. We discuss these differences and
their impact on the resulting model; how they fix some problem but drastically steer the model away
from its original proposed form. We named this section algorithmic solution since the explored modifi-
cation are algorithmic rather than theoretical. Our main objective in this chapter is to raise awareness
and motivate further research in this area.

5.3.1 Tradeoff between reconstruction and regularization

Remember that

L(φ, θ) = Eqφ(z|x) [ln pθ(z) + ln pθ(x|z)− ln qφ(z|x)]

= Eqφ(z|x) [ln pθ(x|z)]
Reconstruction error

−KL (qφ(z|x)|pθ(z))
Regularization term

. (5.2)

(5.3)

Chapter 5. Variational Autoencoders: theory and implementations 64

Figure 5.9: Images x on the top row and its reconstruction µx(qφ(x)) on the bottom row produced with
a β-VAE with latent space of dimension d = 20

In multiple implementations we observed a wide range of modifications to the objective function where
both the reconstruction error and the regularization term are considered separately. To begin we will
address the balance, or lack thereof, between the two components of the ELBO.

When perceiving the ELBO as a regularized optimization problem as defined in section 5.1.1, the
need for an hyper-parameter controlling the strength of the regularization might seem beneficial. It is
now common to add a hyper-parameter, say β in the objective function to allow us to control the balance
between the reconstruction error and the regularization

Eqφ(z|x) [ln pθ(x|z)]− βKL (qφ(z|x)|pθ(z)) . (5.4)

Models optimized with the objective function of Equation 5.4 are known as β-VAEs [63, 24] and they were
developed to improve the disentanglement of the latent representation. In fact, their ability to form a
disentangled representation has been well studied [63, 24]. However, there is little discussion on the effect
of this hyper-parameter on the generative abilities of β-VAEs and how to select the hyper-parameter β

appropriately.

The authors indicate that a large β is putting a stronger constraint on the latent bottleneck than in the
original VAE formulation which... should encourage the model to learn the most efficient representation
of the data. They also claim that the regularizing term in the objective function encourages conditional
independence in qφ. However this is done to the detriment of the reconstruction term and to the
detriment of variability in generated samples.

Simply put, Equation 5.4 directly implies that small β leads to a more accurate reconstruction and
large β to more regularization. In other words, small β enables the algorithm to compress the data to a
lower-dimensional space and reconstruct an almost perfect image:

In Figure 5.9 we observe much better reconstruction that previously in Figure 5.5.

5.3.2 Reconstruction term

Secondly, let us discuss the implementation of the reconstruction term. If we assume that x|z ∼ N then

ln pθ(x|z) = ln

(
1√

2πσ(z)2
exp

(
−(x− µ(z))2

2σ(z)2

))

= −1

2
ln
(
2πσ(z)2

)
− (x− µ(z))2

2σ(z)2
. (5.5)

Common implementations do not maximize the reconstruction term of Equation 5.5. Instead the NN
θ returns an output of the same size as x and minimize the mean squared error (MSE) between x and

Chapter 5. Variational Autoencoders: theory and implementations 65

the reconstructed x̄ = µ(z). The motivation is that minimizing the MSE is equivalent to maximizing
the log-likelihood for a normal distribution with a fixed σx = 1 (I)

−1

2
ln (2π)− (x− µ(z))2

2
∝ −(x− µ(z))2.

Based on empirical result fixing σ(z) produces better reconstructed images:

Figure 5.10: Images x on the top row and its reconstruction µx(qφ(x)) on the bottom row produce from
a simple VAE with latent space of dimension d = 2 and σ = 1

Figure 5.11: Images x on the top row and its reconstruction µx(qφ(x)) on the bottom row produce from
a simple VAE with latent space of dimension d = 20 and σ = 1

In Figures5.10 and 5.11 we have noticeably better reconstruction than in Figures 5.4 and 5.5.

5.3.3 Modification to the ancestral sampling procedure

Finally, let us introduce a modification done to the data generation technique. We previously discussed
how VAEs were presented as generative models and that the graphical representation suggested the
Ancestral Sampling technique detailed in Algorithm 6.

However, all the implementations found online, including Kingma’s implementation [85], do not rely
on ancestral sampling. Actually, none of the implementation we found sample images from p(x|z),
instead x is deterministic given z, which is why we coined this technique deterministic sampling.

Algorithm 7: Deterministic Sampling
INPUT: n desired size of the generated sample
1) Sample z from N(0, I).
2) Process z through the NNs θ to get µx(z) and σx(z).
3) Return µx(z)
OUTPUT: a sample of means (µx) of size n

The only difference between the samples of Figures 5.7 and Figures 5.12 is the sampling technique.
In other words, we have trained a simple VAE, as introduced in section 5.1, but instead of generating x

from pθ(x|z), we simply returned µx(z). The difference in the quality is noticeable on eyesight.

Chapter 5. Variational Autoencoders: theory and implementations 66

(a) d = 2 (b) d = 20

Figure 5.12: Sample obtained from µx(z) where z ∼ N(0, I).

Figure 5.13: Images x on the top row and its reconstruction µx(qφ(x)) on the bottom row produced
from a simple VAE with latent space of dimension d = 2 and σ = 0.0001

Figure 5.14: Images x on the top row and its reconstruction µx(qφ(x)) on the bottom row produced
from a simple VAE with latent space of dimension d = 20 and σ = 0.0001

5.3.4 Effect on the model optimized

The three algorithmic solutions discussed above have one thing in common; they all directly affect how
the total observed variance is distributed in the resulting model.

For β-VAE, the β parameter influences the variance of qφ(z|x). Large β pushed qφ(z|x) towards a
N(0, I) distribution while small β allows qφ(z|x) having a much large variance with correlated dimensions.

Similarly, when fixing σx = I, the distribution of the total variability is now fixed by the user. Fixing
σx constrain the variance of pθ(x|z). Like β can be adjusted to distribute the variability in different
way, σx can be fixed to different values. For instance, if we wanted to force the latent variable to take
on larger portions of the variability we could fix σx to a small value, this was also suggested by Lucas
et al. [105].

Chapter 5. Variational Autoencoders: theory and implementations 67

Figure 5.14 shows impressive reconstruction. These images are, on eyesight, as good as those of
Figure 5.9 but using totally different approaches. Earlier with selected a small β thus relaxing the
constraint applied by the regularization term and here we have fixed a small σx. Those two techniques
allow for most of the variability to be explained by the latent space. The fact that adjusting σx leads
to similar fit than adjusting β was mentioned by Lucas [105] but it was not mentioned that this is due
to both having similar effect on how the total variability is distributed across both components, latent
and observed, of the VAE.

Finally, the last modification discussed constrains the variance of pθ(x|z) when generating. For a
fixed z then x = µx(z) which is equivalent to fixing σx = 0; this turns the generating distribution from
a Normal to a Dirac Delta distribution.

Another way to perceive this constraint is that it ensures a correlation between the pixels. When
using µx(z) every pixel has the exact same distribution value of 0.5. This is because the mean of a
normal distribution is also its median; F (µ) = 0.5 where F is the distribution function of any normal
distribution. Consequently, pixels are perfectly correlated in their distribution value. We can produce
images that look just as good by sampling z ∼ N(0, I) and then outputting µx(z) + α × σx(z) for any
α as seen in Figure 5.15.

(a) µx(z)− 0.1× σx(z) (b) µx(z) + 0.1× σx(z)

Figure 5.15: Samples obtained from a simple VAE with z ∼ N(0, I).

To summarize, these three algorithmic solutions improve either the compression/decompression abil-
ities or generative abilities of the simple VAE by putting constraints on the variance either by modifying
the objective function while training or by modifying the sampling procedure when generating new obser-
vations. In the next section we argue that these modifications create new problems and we demonstrate
that the model resulting from those modifications does not respect the theory any longer which, in turn,
makes these new problems hard to solve.

Chapter 5. Variational Autoencoders: theory and implementations 68

5.4 Issues with algorithmic solution

5.4.1 Application issues

The common algorithmic solutions discussed above solve some issues of the simple VAE as illustrated
in section 5.3, however, new problems also appear.

First, selecting the β parameter is a complicated task where the user has to define how important
is the reconstruction relatively to the regularization of qφ. To this day there is no automated way to
select the right value for β. Similarly, if we desire to fix σx the value of this fixed variance has to be
established heuristically.

Second, the improvement in reconstruction observed when fixing a small β or a small σx comes to
the detriment of the generative abilities of VAE. In fact, small β or small fixed σx leads to a qφ with
high variance as explained earlier. This is problematic from a generative perspective. Remember that
we optimize a Monte Carlo sample of the ELBO, thus we train pθ(x|z) using zs sampled from qφ(z|x).
In other words, the NN function θ is trained with zs generated from qφ(z|x). Consequently if qφ(z)

and pθ(z) have drastically different supports then we do not know how does the NN θ will react when
receiving inputs z sampled from pθ(z).

Another generative problem arises with large β, this leads to a lack of variability in generated images.
The lack of variability in the generated data happens when qφ(z|x) resembles too much the prior pθ(z),
instead of getting close to the intractable posterior pθ(z|x), and this problem has been recently coined
posterior collapse. As a matter of fact, if qφ(z|x) ≈ pθ(z) then qφ(z|x) is independent of x; qφ(z|x) does
not vary as x varies. This is not intended; we want the latent representation of x obtained through
qφ(z|x) to contain information about x and thus to be different for different xs. This leads to a latent
space that does not contain information about the observed space and this leads to an homogenized
reconstruction.

Figure 5.16 provides a visualization of the problems caused when β is either too large or too small. In
Figure 5.16a we see the high variance latent space comparatively to the much more constraint counterpart
of Figure 5.16c. The effect of posterior collapse, with too large β, can also be observed in Figure 5.16d
where µx(z) is constant in z and the resulting image is the average of all digits.

These problems are easier to observe when using VAEs on a single digit data set:
We see bigger variability in the images spanned by the latent space in Figure 5.17b but also more

imperfections. This happens when θ has to process zs unobserved in the training process. This contrast
with Figure 5.17d where all images are relatively good but they all look alike. This is a symptom of
posterior collapse.

Similarly we have high variance for qφ(z|x) when fixing σx to a small value such as observed in Figure
5.18.

5.4.2 Theoretical issues

Additionally, we want to raise awareness towards theoretical issues with the algorithmic solutions detailed
in the previous section.

Chapter 5. Variational Autoencoders: theory and implementations 69

(a) Observations x projected onto its latent representa-
tion using z ∼ N(µz(x), σz(x)) with small β

(b) Decoded latent space using µx(z) with small β

(c) Observations x projected onto its latent representa-
tion using z ∼ N(µz(x), σz(x)) with large β

(d) Decoded latent space using µx(z) with large β.

Figure 5.16: Visualization of the latent representation.

Chapter 5. Variational Autoencoders: theory and implementations 70

(a) Observations x projected onto its latent representa-
tion using z ∼ N(µz(x), σz(x)) with small β. (b) Decoded latent space using µx(z) small β.

(c) Observations x projected onto its latent representa-
tion using z ∼ N(µz(x), σz(x)) with large β

(d) Decoded latent space using µx(z) with large β

Figure 5.17: Visualization of the latent representation.

Chapter 5. Variational Autoencoders: theory and implementations 71

(a) Posterior distribution of the latent : p(z|x)
(b) Decoded latent space using µx(z).

Figure 5.18: VAE with latent space of dimension d = 2 and σ = 0.0001

To begin, we quickly address the choice of observed data distribution. Though the VAE model
is very flexible in the form pθ(x|z) can take, lots of implementations use the Bernoulli distribution
[86, 137, 91, 40]. This is a problem since the Bernoulli distribution supports binary variable and thus
it should not be used to model pixels continuously distributed in (0, 1). Similarly, we also encounter a
support problem with normal distribution. Pixels are continuously distributed in (0, 1) but the Normal
support is infinite. However these are more data compatibility problems rather than theoretical issues
with the proposed algorithmic solutions.

When strictly considering the solutions discussed, the biggest problem is the violation of certain
theoretical properties and guarantees of the simple VAE. For the β-VAE, by selecting a β < 1 the
resulting objective function is no longer a lower bound of the marginal log-likelihood log p(x) and thus
we are losing an important theoretical guarantee of the model.

We can take the β-VAE concept to its limit and fix β = 0, this produces the best reconstruction
possible but also eliminates one of the novelties of VAEs; the distribution of the latent variable z. In
fact, when β = 0 the parameters of qφ(z|x) are not estimated anymore. The resulting model is much
closer to an AE fitted by maximizing a likelihood function.

A similar problem comes with combining the use of the MSE as the reconstruction error and the
deterministic sampling procedure. If we optimize µx(z) by minimizing the MSE, thus fixing σx when
training and the data generated is µx(z) itself, thus fixing σx when generating then we got rid of the
probabilistic components of x. Indeed, the θ parameters can be reduced to µx and the variance of pθ(x|z)
is not considered at any point in time during training nor generation. In other words, the resulting model
is totally deterministic in x given z.

Combining these modifications altogether, and taking the β-VAE to its extreme case we now have

Chapter 5. Variational Autoencoders: theory and implementations 72

the following objective function:

(x− µx(z))
2 where z ∼ qφ(z|x) (5.6)

When maximizing the resulting objective function of Equation 5.6, only µx(z) is trained. The model is
now an AE with a NN decoder optimized by minimizing the mean-squared reconstruction error and an
untrained probabilistic encoder.

5.5 Future work
As explained in section 5.3.4 the algorithmic solutions have one thing in common: they all influence how
the total variance is distributed between the latent variables and observed variables. Hence we believe
the cause of the problems observed in section 5.2 with the simple VAE is the lack of identifiability
between the variability attributed to both the observed and the latent component. In short, when fitting
latent variable models the total variability within the observed data x is split between the variance of
the latent variable and the variance of the observed variable and there exist infinitely many ways to
split the total variance in two. To solve this identifiability problem it is common to fix the variance of
one of the components or to decide how to distribute the variability between the two components when
establishing the optimization procedure.

For instance, in PCA the latent representation is designed to take on as much variability from the
observed data space as possible. In PCA, the variance of the latent representation z of size d is the
average of the d largest eigenvalue of the covariance matrix of the observed data.

We want to propose a new theoretical formulation, along with concordant implementation that solves
this variance identifiability problem. We believe having implementations concordant to the theory is
beneficial as it helps to generalize the model to new applications and it will allow us to rely on the
theory if problems come up, which is not the case with the modification now that the resulting model
has strayed away from the theoretical formulation. We also believe that fixing this variance identifiability
problem would be beneficial as it would better grasp the natural variability in a wide range of data sets
which is ignored in a deterministic AE.

Our goal is to allow for the total variance to be expressed differently than it is right now. We want
to take a closer look at probabilistic PCA (pPCA) [144, 143]. In this model, the variance of the latent
representation z of size d is the average of the d largest eigenvalue again and the variance of pθ(x|z) is
the average of the leftover eigenvalues. Compared to PCA where the maximum variance projection is
enforced by the model, the solution in pPCA happens naturally without specific constraints. This is a
strong result we hope to use in our future work on VAE in order to balance naturally both components’
variance. Based on the results of PCA and pPCA where a maximum amount of the variability is
attributed to the latent variable and on the results we observed with β-VAE it seems like for the simple
VAE to produce better reconstruction and generations it needs to shift some of the observed distribution
variance to the latent representation variance. Similarly, we could study GMMs, or any other model-
based clustering. Studying the similarities and differences between VAEs and GMMs could provide us
with interesting insight regarding the problems that VAEs suffer from.

Chapter 5. Variational Autoencoders: theory and implementations 73

Additionally, once this balance is fixed, we believe it is important that the observed distribution
variance can be expressed in a more complete manner; we want to drop the conditional independence
assumption.

Var(
m∑
j=1

xj) =

m∑
j=1

Var(xj) +

m∑
j ̸=i

Cov(xj ,xi) (5.7)

In the simple VAE, the normal distribution that models observations has a diagonal covariance matrix,
which bottlenecks all of the observed distribution variance on the diagonal as suggested by the simple
decomposition of the total variance of Equation 5.7.

In other words, even if the total variance was distributed optimally between z and x|z we would also
need to let some of the covariance term of Equations 5.7 to be non-zero otherwise it will result in high
individual variable variance. This should also better model real data such as images where pixels in
a neighbourhood are highly correlated. In order to optimally fit a covariance matrix we are currently
exploring ideas of spatial statistics.

5.6 Related literature
We faced those problems within the first few years of VAE’s existence in early 2016 and slowly started
working on this chapter. Back then, none of the literature available mentioned those problems neither
how the small coding tricks established earlier were actually drastically changing the model.

Based on our research, the posterior collapse problem is the problem addressed the most in the
literature and it is now fully recognized as a problem and received a lot of attention in the last few years.
Though it was not in an attempt to solve the issue the paper presenting the β-VAE formulation [63, 24]
was among the first to discuss the effect of the regularization term of the ELBO and it’s potential effect
of the variability in the images it produces. He et al. [62] recently provided an insightful investigation of
posterior collapse; they suggest that the cause of posterior collapse is the inference of the approximate
distribution lagging behind the true posterior at the early stages of training.

Alemi et al. [3] directly discussed the posterior collapsed problem with an information theory ap-
proach. The problem is indeed that z does not contain enough information about x and they propose
to optimize VAEs in a way that maximizes the mutual information between the observed variables and
the latent variables. Not only did they address the problem but they also encouraged research in that
regard.

After a publication from Dai et al. [37] discussing the relationship between PCA and VAEs, Lucas
et al. [105] made connections with the pPCA model. They demonstrate that the regularization term is
only partially responsible for posterior collapse but mostly that the variance parameter of the decoding
distribution was playing a huge role. This confirms what we suspect. The authors make a thorough
analysis of the effect of the variance term and suggest that the optimization procedure naturally favours
too much observed-data variance and suggest way to reduce it to solve the posterior collapse problem.
Overall this paper is a great contribution towards solving some of the VAE issues.

Lucas et al. [105] also show that, for a linear VAE, the ELBO has the same global maximum as the log
likelihood and thus the solution has scaled principal components as the columns of the decoder network.

Chapter 5. Variational Autoencoders: theory and implementations 74

They also show that using the ELBO objective does not introduce new local maxima. Finally, after
establishing a metric for posterior collapse they demonstrate how fixing a small σx makes the posterior
collapse problem completely disappear. Additionally, we have shown in this chapter that restraining
the variance in p(x|z) drastically improves the reconstruction abilities of VAEs. Now, many solutions
and formulations have been proposed [4, 151, 128]recently to discuss the variance problems and we are
excited to see such keen interest towards this problem.

Although we have only noticed few articles discussing the issue with the current generative problem,
Dorta et al. [42, 41] came up with a similar observation that we did; µx(z) is commonly used to generate
images because of the poor performances of ancestral sampling which is caused by the lack of correlation
between pixels. The solution they proposed is a fully parametrizes covariance matrix for p(x|z).

5.7 Conclusion
The VAE model as defined in the literature [86, 83] is built upon a rigorous theory and the described
model is both innovative and a big contribution to the fields of machine learning and statistics alike. It
extends latent variable models to allow for more flexible functions between the latent and the observation
space and has empirically performed well on some real-data problems.

However it seems there are big difference between the theory and the popular implementations. The
current implementations fix some of the problems encountered when using VAEs but they do so by
taking out the components that made VAEs special. In this chapter, we demonstrated how most of the
simple fixes we found online are progressively transforming a VAE into an AE. We demonstrated that
these fixes also come with new problems. Finally, we provided a taste of the solutions we are currently
working on.

Chapter 6

An evaluation of machine learning
techniques in survival analysis

Predicting the outcome for children treated for Hodgkin-
Lymphoma

In this chapter we analyse a data set containing information on children with Hodgkin Lymphoma
(HL) enrolled in a clinical trial. Treatments received and survival status were collected together with
other covariates such as demographics and clinical measurements. Our main task is to explore the
potential of machine learning (ML) algorithms in a survival analysis context in order to improve over
the Cox Proportional Hazard (CoxPH) model. We discuss the weaknesses of the CoxPH model we want
to improve upon and then we introduce multiple algorithms, from well-established ones to more recent
models, that solve these issues. We then compare every model according to the concordance index (c-
index) and the Brier score. Finally, we produce a series of recommendations, based on this experiment,
for practitioners of the medical field who would like to benefit from the recent advances in artificial
intelligence.

In this chapter, the contributions are (1) a new survival analysis algorithm built upon the VAE
architecture (SAVAE), (2) a thorough comparison of a wide range of survival analysis machine learning
algorithms on a real data set and (3) a list of recommendations and a discussion regarding machine
learning abilities to deal with real life medical data sets. The main contributions of this chapter were
introduced in a workshop paper published at NeurIPS [12] and in a research article published in Applied
Artificial Intelligence [13].

6.1 Introduction
There is increasing effort in medical research to applying ML algorithms to improve treatment decisions
and predict patient outcomes. In this chapter, we explore the potential of ML algorithms to predict the
outcome of children treated for Hodgkin-Lymphoma. As we want to minimize the side effect of intensive
chemotherapy or radiation therapy, a major clinical concern is how, for a given patient, can we select a

75

Chapter 6. An evaluation of machine learning techniques in survival analysis 76

treatment that eradicates the disease while keeping the intensity of the treatment, and the implied side
effect, to a minimum.

In this chapter we introduce multiple ML algorithms adapted to our needs and compare them with
the Cox proportional hazard model. As it is the case with many data set within this field, the response
variable, time until death or relapse, was right-censored for patients without events and the data set
is of relatively small size (n=1712). These characteristics are uncommon in typical ML applications
and this is part of the challenge. In many cases, ML techniques are not designed to deal with censored
observations and thus it restricts the techniques we can include in our case study. Medical data sets
usually have a smaller number of observations than the data sets ML algorithms are tested on and
consequently our results may differ from the results previously published in the ML literature.

We introduce the data set in section 2. In section 3 we introduce the algorithms tested. Then, in
section 4 we present in detail the algorithm we developed. In section 5, we discuss the experimental
set up and our results. Finally, in section 6, we hold a thorough discussion on the results, recommend
further improvements and introduce open questions.

6.2 Data set
We have a data set of 1 712 patients, treated on the Children’s Oncology Group trial AHOD0031, one
of the largest trial of pediatric HL ever conducted. Each observation represents a patient suffering from
Hodgkin Lymphoma. For every patient, characteristics and symptoms have been collected as well as
the treatment selected by the physician for a total of 21 predictors. A table containing information on
the predictors is in the appendix. The response is a time-to-event variable registered in number of days.
We consider events to be either death or relapse. For patients without events, the response variable
was right-censored at time of last seen, which is a well-known data structure in survival analysis. This
data set and the data collecting technique are presented in detail by Friedman & al. [48] who previously
analysed the same data set for other purposes.

6.3 Survival Analysis models

6.3.1 Benchmark : Cox Proportional Hazard Model

The Cox Proportional Hazard (CoxPH) model [34] serves as our benchmark model. It is widely used
in medical sciences since it is robust, easy to use and produce highly interpretable results. It is a semi-
parametric model that fits the hazard function, which represents the instantaneous rate of occurrence
for the event of interest, using a partial likelihood function [35].

The CoxPH model fits the hazard function which contains two parts, a baseline hazard function
of the time and a feature component which is a linear function of the predictors. The proportional
hazard assumption assumes the time component and the feature component of the hazard function are
proportional. In other words, the effect of the features is fixed through time. In the CoxPH model, the
baseline hazard, which contains the time component, is usually unspecified so we cannot use the model
directly to compute the hazard or to predict the survival function for a given set of covariates.

Chapter 6. An evaluation of machine learning techniques in survival analysis 77

The main goal of this analysis is to test whether or not new ML models can outperform the CoxPH
model. As recently developed ML models have shown great potential in many data analysis applications,
it seems important to test their potential in the medical field. We selected models that improve upon
at least one of the three following problems that are intrinsic to the CoxPH model. Problem (1): the
proportional hazard assumption; we want models that allow for features effect to vary through time.
Problem (2): the unspecified baseline hazard function; we want models able to predict the survival
function itself. Problem (3): the linear combination of features; we want models that are able to grasp
high order of interaction between the variable or non-linear combinations of the features.

Weibull regression: an additional benchmark

As recommended by our thesis committee, we incorporated a Weibull regression model [77] as a secondary
benchmark model. This additional benchmark is closer in spirit than CoxPH to some of the new ML
models, such as the model we propose, the SAVAE. Consequently, the Weibull regression is used as an
additional benchmark.

The Weibull distribution is a continuous parametric failure time model. It extends the exponential
distribution since it allows the hazard to vary through time. It fixes problem (2) because it does fit the
distribution of the time-to-even completely however it is a member of the proportional hazard family;
the effect of the features on the hazard is fixed through time. This model will be fit using the survival
[140] R-package.

6.3.2 Conventional statistical learning models

Regression models

The first model to be tested is a member of the CoxPH family. One way to capture interactions between
predictors in linear models, and thus improve towards problem (3), is to include interaction terms. Since
typical medical data set contains few observations and many predictors, including all interactions usually
leads to a saturated model.

To deal with this issue we use a variable selection model. Cox-Net [135] is an extension of the
now well-know lasso regression [61] implemented in the glmnet package [49] and is the first model we
experiment with. The Cox-Net is a lasso regression-style model that shrinks some coefficients of the
model to zero and thus ensure the model is not saturated. The resulting model is as interpretable as the
benchmark CoxPH model, but Cox-Net allows us to include all interactions in the base model without
losing too many degrees of freedom.

Another approach based on regression models is the Multi-Task Logistic Regression (MTLR). Yu
et al. [154] proposed the MTLR model which quickly became a benchmark in the ML community for
survival analysis and was cited by many authors [106, 46, 156, 74]. The proposed technique directly
models the survival function by combining multiple local logistic regression models and considers the
dependency of these models. By modelling the survival distribution with a sequence of dependent
logistic regression, this model captures time-varying effects of features and thus the proportional hazard
assumption is not needed. The model also grants the ability to predict survival time for individual

Chapter 6. An evaluation of machine learning techniques in survival analysis 78

patients. This model solves both problem (1) and (2). For our case study, we use the MTLR R-package
[58] recently implemented by Haider.

Survival tree models

Decision trees [22] and random forests [18, 20] are known for their ability to detect and naturally
incorporate high degrees of interactions among the predictors which is helpful towards problem (3).
They are well-established models and they also make very little assumption about the data set. For
these reasons, this family of models is a natural choice for our case study.

Multiple adaptations of decision trees were suggested for survival analysis and are commonly referred
as survival trees. The idea suggested by many authors is to modify the splitting criteria of decision trees
to accommodate for right-censored data. Based on previously published reviews of survival trees [92, 16],
we have selected four techniques for the case study.

One of the oldest survival tree models that was implemented in R is the Relative Risk Survival Tree
[93]. This survival tree algorithm uses most of the architecture established by CART [22] but also borrows
ideas from the CoxPH model. The model suggested by LeBlanc et al. assumes proportional hazards
and partitions the data to maximize the difference in relative risk between regions. This technique is
implemented in the rpart R-package [141].

We also selected a few ensemble methods. To begin, Hothorn et al. [67] proposed a new technique to
aggregate survival decision trees that can produce conditional survival function, which solves problem
(2). To predict the survival probabilities of a new observation, they use an ensemble of survival trees
[93] to determine a set of observations similar to the one in need of a prediction. They then use this set
of observations to generate the Kaplan-Meier estimates for the new one. Their proposed technique is
available in the ipred R-package [116]. A year later, Hothorn et al. [64, 139] proposed a new ensemble
technique able to produce log-survival time estimates instead. We experiment with this technique with
the implementation available in the party R-package [66, 65].

Finally, the latest development in random forests for survival analysis is Random Survival Forests
[70]. This implementation of a random survival forest was shown to be consistent [69] and it comes with
high-dimensional variable selection tools [71]. This model was implemented in the randomForestSRC
R-package [72].

6.3.3 Newly established models

Deep learning models

The first new model we experiment with is built upon the most popular architecture of models in recent
years: deep neural networks. Yu et al. [154] MTLR model inspired many modifications [106, 46, 156,
74] in order to include a deep-learning component to the model. The main purpose is to allow for
interactions and non-linear effect of the predictors. For example, Fotso [46, 47] suggested an extension
of the MTLR where a deep neural networks parametrization replaces the linear parametrization and
Luck et al. [106] proposed a neural network model that produces two outputs: one is the risk and one is
the probability of observing an event in a given time bin. Unfortunately, the authors for most of these

Chapter 6. An evaluation of machine learning techniques in survival analysis 79

techniques [106, 156, 74] did not provide either their code or a package which causes great reproducibility
problems and leads to a serious accessibility issue for practitioners. The DeepSurv architecture [80]
proposed by Katzman et. al is a direct extension to the CoxPH model where the linear function of the
covariance is replaced by a deep neural network. This allows the model to grasp high-order interactions
between predictors therefore solving problem (3). By allowing for interaction between covariates and the
treatment the proposed model provides a treatment recommendation procedure. Finally, the authors
provided a Python library available on the first author’s GitHub [79].

Latent-variable models

The final model is a latent-variable model based on the Variational AutoEncoder (VAE) [86, 83] ar-
chitecture that we propose. Louizos et al. [104] recently suggested a latent variable model for causal
inference. The latent variables allow for a more flexible observed variable distribution and intuitively
model the hidden patient status. Inspired by this model and by the recommendation of Nazbal et al.
[110] we implemented a latent variable model [12] that adapts the VAE architecture for the purposed
of survival analysis. Our Survival Analysis Variational AutoEncoder (SAVAE) uses the latent space to
represent the patient true sickness status and can produce individual patient survival function based on
their respective covariates which should solve problem (1), (2) and (3). We introduce our model in the
next section.

6.4 Survival Analysis Variational AutoEncoder

In this section we present our Survival Analysis Variational AutoEncoder (SAVAE). The main purpose
of latent variables is to allow for more flexible and complicated distributions for the observed variables
[15, 88]. The VAE we proposed is associated with the following graphical representation:

z

x

y

t

(a) Generative network. It assumes p(x, y, t, z) =
p(z)p(x|z)p(t|x)p(y|t, z).

z

x

y

(b) Inference network. Given observations x and re-
sponse y we can infer the latent variable using q(z|x, y).

Figure 6.1: The graphical representation of our deep-latent variable model. The response is identified
by y, the treatment by t, the observed characteristics by x and the patient health status by z.

The representation illustrated in figure 6.1 induces a natural factorization of the joint distribution.
As said earlier, from a practical perspective, the latent variables z are incorporated to allow for a more
flexible observed data distribution but the graphical model also leads to an intuitive description. Since

Chapter 6. An evaluation of machine learning techniques in survival analysis 80

there can be two patients with the same characteristics x that received the same treatment t but have
completely different response y we assume there is an unobserved or unmeasured variable that affects
our collected data set. This latent variable z represents the true patient health status and directly affects
the survival chances of the patient y and the covariates x that were gathered as proxy for the true health
status. The treatment t is considered a special covariate as it is selected by a physician based upon the
observed covariates x. Finally, the distribution for the response y depends on the patient health status
z and the treatment selected t.

Neural network parametrizations along edges of the graphical representation ensure that the model
includes high order of interactions between the variables which is important to us but difficult to do
with the Cox PH model, described as problem (3).

6.4.1 Model distributions

In order to establish the objective function, the ELBO, we need to establish the various distributions of
our model. Based upon the factorization suggested in figure 6.1, the joint distribution can be expressed
as

pθ(z,x, t, y) = pθ(z)pθ(x|z)pθ(t|x)pθ(y|t, z). (6.1)

We decided to set the prior distribution of the latent variables to a simple Normal ball, a classic
choice for VAEs

p(z) = N (z|0, I). (6.2)

The size of the latent space is considered a tuning parameter, using the validation set we decided
upon a latent space of dimension 4. The observed predictors x are assumed conditionally independent
given the latent variables z

pθ(x|z) =
Dx∏
j=1

pθ(xj |z). (6.3)

Within the data set the proxy variables for health status x were taking multiple forms and thus we
used many different distributions: Normal distribution for continuous variables, generalized Bernoulli
(categorical) distribution for categorical variables, Poisson distribution for counting variables and finally
exponential distribution for time-to-event variables. In our model, t represents possible additional treat-
ments; intensive chemotherapy and radiation therapy. Both of these are independently either given or
not, thus a Bernoulli distribution is well suited to model these two variables

p(tj |x) = Ber(π̂j) for j ∈ {1, 2}. (6.4)

Finally, the distribution of the response y was set to be Weibull, a common distribution in the survival
analysis literature

p(y|t, z) = Weibull(λ,K). (6.5)

In order to allow for interactions between variables, for a complex relationship between the latent
variables and the observed ones and for a general set up that might get expanded to more applications,
we utilized a neural network parametrization. More specifically, we use neural networks along all edges
of the graph in figure 6.1 to represent the relationship between the set of parent variables and the

Chapter 6. An evaluation of machine learning techniques in survival analysis 81

parameters of the children distributions. Explicitly,

θ = f2(W2f1(W1z)) (6.6)

[π1, π2] = f4(W4f3(W3x)) (6.7)

[λ,K] = f6(W6f5(W5[z, t])), (6.8)

where f ’s are activation functions and W’s are matrices of weights which include biases.

Finally, because the true posterior pθ(z|x, t, y) is intractable analytically we proposed a variational
approximation. Our proposed approximation qφ(z|x, y) is independent of t, as illusatrated in figure
7.5b. This is because the true poseterior is also indepedent of t which is a direct consequence of the
joint decomposition proposed p(z,x, t) = p(z)p(x|z)p(t|x),

p(z|x, t) = p(z,x, t)

p(x, t)

=
p(z)p(x|z)p(t|x)

p(x)p(t|x)

=
p(z)p(x|z)

p(x)
= p(z|x).

This results in the following variational distribution

qφ(z|x, y) = N (z|µ, σ2I), (6.9)

where the parametrization is established again with a neural network

[µ, σ] = f8(W8f7(W7[x, y])). (6.10)

To summarize, Wi for i ∈ {1, ..., 8} are matrices of parameters that require training.

6.4.2 Fitting the parameters

The parameters of the various neural networks will require training. As mentioned in section 2.2.3, the
ELBO is a lower bound for the log-likelihood of the observed data and will be the objective function to
maximize during training. Using the factorization proposed by figure 6.1 and explained in section 6.4.1
we have

ELBO = Eqφ

[
ln

pθ(x, t, y, z)

qφ(z|x, y)

]
= Eqφ [ln pθ(x, t, y, z)− ln qφ(z|x, y)]

= Eqφ [lnpθ(z) + lnpθ(x|z) + lnpθ(t|x) + lnpθ(y|t, z)− lnqφ(z|x, y)] . (6.11)

When fitting such model, we maximize the ELBO with respect to the matrices of weights (W’s) of the
neural network functions. This will require the use of back-propagation combined with a gradient-based
optimizer.

Chapter 6. An evaluation of machine learning techniques in survival analysis 82

6.4.3 Prediction and decision-making

The ultimate goal of this analysis is to provide tools to physicians that allow them to make a decision
about the treatment needed for a patient. With our probabilistic approach we aim at giving physicians
a wide range of information which they can utilize however they see fit. Our model produces a predicted
distribution for the event-free survival time of a patient given its characteristics and the selected treat-
ment. Having such distribution for every possible treatment gives flexibility regarding decision-making
as physicians can look at various properties of the predicted distribution such as its expected value, its
variance or its survival function.

Under the parametrization of equation 6.1 induced by the graphic of figure 6.1 there is no direct way
to estimate p(y|t, x), the density for the response given the treatment and the patient characteristics.
Consequently, we use an importance sampling technique

p(y|t,x) =
∫
z

p(y|t,x, z)p(z|t,x)dz

=

∫
z

pθ(y|t, z)p(z|t,x)dz. (6.12)

Since we cannot sample directly from p(z|t,x) we must use a distribution of z from which we can
easily draw samples. The prior pθ(z) is easy to sample from, thus

p(y|t,x) =
∫
z

pθ(y|t, z)p(z|t,x)dz

=

∫
z

pθ(y|t, z)
p(z|t,x)
pθ(z)

pθ(z)dz (6.13)

≈ 1

L

L∑
l=1

rlpθ(y|t, zl),

where rl = p(zl|t,x)/pθ(zl). The above will be a mixture of Weibull of L components with weights
rl/L. One might notice that we cannot evaluate p(zl|t,x) with our current model, but we can up to a
normalization constant which leads to the following

p(y|t,x) =
∫
z

pθ(y|t, z)
p(z|t,x)
pθ(z)

pθ(z)dz

=

∫
z

pθ(y|t, z)
p(z, t,x)

pθ(z)p(x, t)
pθ(z)dz

=

∫
z

pθ(y|t, z)
pθ(z)pθ(x|z)p(t|x)
pθ(z)p(x)p(t|x)

pθ(z)dz (6.14)

=

∫
z

pθ(y|t, z)
pθ(x|z)
p(x)

pθ(z)dz

≈ 1

L

1

p(x)

L∑
l=1

pθ(x|z)pθ(y|t, zl).

We can also use the same sample to evaluate the normalization constant p(x)

p(x) =

∫
z

pθ(x|z)pθ(z)dz ≈ 1

L

L∑
l=1

pθ(x|zl), (6.15)

Chapter 6. An evaluation of machine learning techniques in survival analysis 83

and both of these results combined lead to

p(y|t,x) ≈
L∑

l=1

wlpθ(y|t, zl), (6.16)

where

wl =
pθ(x|zl)∑L

k=1 pθ(x|zk)
, (6.17)

which resembles a mixture of Weibull, where L is the number of components, and wl is the compo-
nent weight. This is the function that allows us to predict the survival distribution for a patient with
characteristic x which received the treatment t.

One of the benefit of SAVAE is that instead of producing point estimates, say the expected survival
time, it models the time-to-event with a complete distribution. We believe it offers a lot more flexibility
which in turns allow for different decision-making approaches. Here, we will mention a few examples of
information that can be extracted from the predicted distribution.

To begin, we could compute the expected survival time

E[y|t,x] = E

L∑
l=1

wlpθ(y|t, zl)

=

L∑
l=1

wlE(y|t, zl).

(6.18)

Survival function at any point in time y can also be obtained quite simply

P (Y > y|t,x) =
L∑

l=1

wlPθ(Y > y|t, zl). (6.19)

An advantage of our proposed model is that it allows for different decision-making strategy; a physician
could be interested in three years survival chances, another physician might prefer to estimate four years
survival chances and one might be interested in the expected survival. All of those physicians could
select the appropriate treatment according to their decision-making strategy. As mentioned earlier, if we
wish to give additional treatment to a patient only if it improves drastically it’s survival chance then our
model can estimate the increase in survival chances at a given time y by selecting treatment t1 instead
of treatment t0 by computing

P (Y > y|t1,x)− P (Y > y|t0,x). (6.20)

In short, a practitioner could decide ahead what is considered a significant improvement in survival
chances, say α, and give treatment t1 instead of the base treatment t0 if equation 6.20 is greater than α.

Chapter 6. An evaluation of machine learning techniques in survival analysis 84

6.5 Data analysis

6.5.1 Evaluation metrics

We use two different metrics to evaluate the various algorithms, both are well established and they
evaluate different properties of the models. First, the concordance index [60] is a metric of accuracy for
the ordering of the predicted survival time or hazard. Second, the Brier score [57] is a metric similar to
the mean squared error but adapted for right-censored observations.

Concordance Index

The concordance index (c-index) was proposed by Harrell et al. [60]. It is one of the most popular
performance measures for survival problems [138, 26, 79] because of the way it accounts for the censored
data. It is defined as the proportion of all usable patient pairs in which the predictions and outcomes
are concordant. Pairs are said to be concordant if the predicted event times have a concordant ordering
with the observed event times.

Recently Steck et al. used the c-index directly as part of the optimization procedure [138], their paper
also elegantly presents the c-index itself as illustrated in figure 6.2. In their article, it is defined as the
fraction of all pairs of subjects whose predicted survival times are correctly ordered among all subjects
that can actually be ordered. We expect a random classification algorithm to achieves a c-index of 0.5.
The further from 0.5 the c-index is the more concordant pairs of predictions the model has produced. A
c-index of 1 indicates perfect predicted order.

Figure 6.2: Steck et al.(2008) graphical representation of the c-index computation. Filled circle represents
observed points and empty circle represents censored points. The edges in the figure represent the pairs
of points for which the order of events can be established.

Figure 6.2 illustrates when we can compute the concordance for a pair of data points; this is repre-
sented by an arrow (edge). We can evaluate the order of events if both events are observed. If one of
the data points is censored, then concordance can be evaluated if the censoring for the censored point
happens after the event for the observed point. If the reverse happens, if both points are censored or if
both events happen exactly at the same time then we cannot evaluate the concordance for that pair.

Chapter 6. An evaluation of machine learning techniques in survival analysis 85

Brier Score

The Brier score established by Graf et al. [57] is a performance metric inspired by the mean squared
errors (MSE). For a survival model it is reasonable to try to predict P (T > t|X = x) = S(t|X = x) the
survival probabilities a time t for a patient with predictors x which is represented with π(t|x) in Graf’s
notation. Thus, π̂(t|x) is the predicted probability of survival at time t for a patient with characteristics
x. These probabilities are considered predictions for the observed event y = 1(T > t) in order to compute
the MSE. If the data contains no censoring then the Brier Score is:

BS(t) = 1

n

n∑
i=1

(1(Ti > t)− π̂(t|xi))
2 (6.21)

Assuming we have a censoring survival distribution G(t) = P (C > t) and an associated Kaplan-Meier
estimated Ĝ(t). For a given fixed time t we are facing three different scenarios :

Case 1: Ti > t and δi = 1 or δi = 0

Case 2: Ti < t and δi = 1

Case 3: Ti < t and δi = 0,
where δ1 = 1 if the event is observed and 0 if it is censored. For case 1, the event status is 1 since the
patient is known to be alive at time t; the resulting contribution to the Brier score is (1− π̂(t|xi))

2. For
case 2, the event occurred before t and the event status is equal to 1(Ti > t) = 0 and thus the contribution
is (0− π̂(t|xi))

2. Finally, for case 3 the censoring occurred before t and thus the contribution to the Brier
score cannot be calculated. To compensate for the loss of information due to censoring, the individual
contributions have to be reweighed in a similar way as in the calculation of the Kaplan-Meier estimator
leading to the following Brier Score :

BSc(t) =
1

n

n∑
i=1

(
(0− π̂(t|xi))

21(Ti < t, δi = 1)(1/Ĝ(Ti)) + (1− π̂(t|xi))
21(Ti > t)(1/Ĝ(t))

)
(6.22)

6.5.2 Comparative results

The data set introduced in section 6.2 was imported in both R [118] and Python [150]. To evaluate the
algorithms we randomly divided the data set into 1500 training observations and 212 testing observations.
The models were fit using the training observations and the evaluation metrics were computed on the
testing observations.

As mentioned in the previous sections, the CoxPH benchmark and the conventional statistical learning
models were all tested in the R language [118]. They were relatively easy to use with very little adjustment
needed and clear and concise documentation. The computational speed of these algorithms was fast
enough on a single CPU so that we could perform 50 trials. The newly established techniques needed
a deeper understanding of the model as they contain many hyper-parameters that require calibration.
They were also slower to run on a single CPU.

Figure 6.3 illustrates Sinaplots [134] with associated Boxplots of the c-index and the Brier scores
for the CoxPH model and the 8 competitors. We used standard boxplots on the background since they
are common and easy to understand. The sinaplots superposed on them represent the actual observed
metric values and convey information about the distribution of the metrics for a given technique. As

Chapter 6. An evaluation of machine learning techniques in survival analysis 86

0.5

0.6

0.7

Cox Weibull CoxNet STree BTree CForest RSF MTLR DeepSurv SAVAE
Techniques

C
on

co
rd

an
ce

 In
de

x

(a) Boxplots and Sinaplots of the c-index (higher the better).

0.10

0.15

0.20

0.25

Cox Weibull CoxNet STree BTree CForest RSF MTLR DeepSurv SAVAE
Techniques

B
rie

r
S

co
re

(b) Boxplots and Sinaplots of Brier Scores evaluated at 3 years (lower the better)

Figure 6.3: Results from our experiments.

mentioned earlier c-index ranges from 0.5 to 1 where a c-index of 1 indicates perfect predicted order.
According to figure 6.3a, it seems no model clearly outperforms another. CoxNet is the best-performing
model but the difference is not statistically significant with either the CoxPH nor the Weibull model.

Since the Brier score is a metric inspired by the mean squared error, it ranges from 0 to 1 and
the lower the Brier score is the better the technique is. The SAVAE has the lowest average Brier

Chapter 6. An evaluation of machine learning techniques in survival analysis 87

score of all the techniques compared and this is the main reason why we published our results in a
NeurIPS workshop. Additionally, the SAVAE significantly (statistical significance) outperforms the
CoxPH benchmark. However, as shows in Figure 6.3b none of the new techniques drastically outperforms
CoxPH and none significantly outperform the secondary Weibull benchmark.

6.5.3 Specifics about SAVAE

Our proposed SAVAE shows potential and achieved the best Brier Score of all the models we tested.
However, compared to the benchmark CoxPH model, we had to invest hours to adjust the hyper-
parameters. This is also true for the other newly established model tested. Therefore, we could not
recommend our model to any practitioner; CoxPH is easy to use for any survival analysis but given a
new problem and a new data set our model would need to be reconstructed all over again. This is a
problem that affects most of the recent models.

6.6 Takeaways and Recommendations
The previous section demonstrates that the new ML methods offers little improvement compared to the
benchmark CoxPH model according to our two designated performance metrics. This initially turned
out as a disappointing result as we hoped to provide improvement in prognostic prediction and eventually
positively impact patients with Hodgkin Lymphoma. On the flip side, from a critical ML perspective
this is an important result as we need to evaluate the abilities of ML techniques to solve real-life data
problems.

Similar results on real-life data sets are observed in article presenting methodologies [46, 106, 74]
where the proposed techniques provide non-significant improvements over simple models such as CoxPH.
Christodoulou et al. [44] recently performed an exhaustive review of 927 articles that discuss the devel-
opment of diagnostic or prognostic clinical prediction models for binary outcomes based on clinical data.
The authors of the review noted the overall poor comparison methodologies and the lack of significant
difference between a simple logistic regression and newly established ML techniques in many recent
publications. These results are supported by Hand [59] who discussed in detail the overall strength of
the simple models, given how simple they are, compared to recent newly established ML models. This
raises an important question our case study highlights: is it worth using more complex models for a
slight improvement?

The alternative we proposed in section 6.3 are all more complicated than CoxPH in various manners.
The new techniques require deeper knowledge of the algorithm behaviours to correctly fix the many
hyper-parameters. They lead to less interpretable results due to the model complexity. Finally, they
require a lot more computing power. Indeed, if the CoxPH model can be fit in seconds, most of the
conventional statistical learning models take minutes to fit and the newly established models take hours.
Finally, most of the new techniques still suffer from accessibility issues. For instance, as an open language
Python offers very little support to users and the libraries are not maintained, not standardized and
come with dependency issues.

Hand [59] demonstrates the high relative performances of extremely simple methods compared to
complex ones and mathematically justifies his argument. He also discusses how these slight improve-

Chapter 6. An evaluation of machine learning techniques in survival analysis 88

ments over simple models might be undesirable as they might be attributed to overfitting common ML
data sets which would cause reproducibility issues on new data sets. These slight improvements might
also be artificial as they were achieved only because the inventors of these techniques were able to ob-
tain through much effort the best performance from their own techniques and not their competitors’
techniques. Overall if the improvements over simple techniques are marginal, perhaps they are simply
not an improvement and this argument seems to be supported by both our case study and the recent
review of Christodoulou et al. [44].

On the flip side, significant improvements for diagnostic tasks have been accomplished using A.I. in
recent years [99, 125, 124] and thus we have to understand the difference between those experiments
and ours. There is a major difference in the style of data sets that were available. In the cited articles,
images (mammographic, gigapixel pathology image, MRI scans) are analysed using deep convolutional
neural networks (CNN) [55]. As mentioned in chapter 2, a CNN is well suited for image analysis as
its architecture itself is designed to incorporate spatial correlation and some degree of shifts and scale
invariance. In comparison, conventional techniques such as logistic regression or CoxPH are not able to
grasp the signal in images, which contains a large number of highly correlated predictors that individually
contain close to no information but analysed together contain a lot.

In our case study, the stratum predictor is a binary predictor indicating if the patient had a rapid
early response to the first round of treatments. Scans of the affected regions are analysed before and
after the first round of treatments and this rich information is transformed into a simple binary variable.
As new tools are established to extract information from ever growing, both in size and complexity,
data sets, practitioners have to rethink how they gather data and transform it to make sure that no
information is lost in order to utilizes these new tools. Extracting and keeping as much information as
possible and selecting models and tools that are designed to analyse a specific style of data were some
of the factors in the success of CNNs in medical images analysis publications.

6.7 Conclusion

In this chapter, we identify a series of statistical and ML techniques that should alleviate some of the
flaws of the well-known CoxPH model. We also establish our own model made especially to alleviate all
of the identified flaws. Even though our proposed SAVAE model offers some improvement according to
the Brier score most of the tested models provide little to no improvement with respect to the designated
metrics. We tested techniques that should have increased our prediction abilities, instead we are forced
to admit that the CoxPH performs really well even when compared to modern models. These results
are supported by other articles with similar findings.

It is now clear that we cannot directly apply new algorithms on existing data set to improve our
current situation. Modern models are usually hand-tailored to new problems and performances are
directly tied to our abilities to craft models to answer specific questions. This is a problem if we
want to establish models that are robust and generalize well to new applications and data structures.
However, judging by the success of CNNs in multiple prognostic tasks, modern ML techniques can
provide significant improvements when used in the right situation.

Chapter 6. An evaluation of machine learning techniques in survival analysis 89

Appendix

Variable Type Description
agedxyrs Continuous Age of the patient at the start of the treatment
gender Binary Biological gender
stage Categorical Cancer stage ranging from 1 to 4
b_symptoms Binary Presence of B symptoms
bulk_disease Binary Presence of Bulk disease
extralymphatic_disease Binary Presence of Extralymphatic disease
fever Binary Presence of recurrent fever
night_sweats Binary Presence of night sweats
weight_loss Binary Presence of significant weight loss (> 10%)
nodal_aggregate Binary Presence of a nodal aggregate
mediastinal_mass Binary Presence of a mediastinal mass
esron Continuous Erthroctye sedimentation rate (mm/hr)
istnon Continuous Number of involved nodal sites
histology Categorical Histology (LP,LD,NS,MC, unknown)
albon Continuous Albumin (g/dL)
hgbon Continuous Hemoglobin(g/dL)
amend Binary
stratum Binary Rapid early response to first treatment
morpho_icdo Categorical ICD-O Morphology codes
RT Binary Treatment variable: Radiotherapy
DECA Binary Treatment variable: Intensive Chemotherapy

Table 6.1: Predictor variables and description

Chapter 7

HWD+ data set: a new computer
vision data set

In the chapter, we present a new hand-written digit data set. It contains high-resolution images of hand-
written digits, a writer identification and various writer characteristics. The data set is publicly available
and is designed to create new research opportunities. We also perform a thorough analysis of this new
data set. We begin with simple supervised tasks. We assess the predictability of the writer characteristics
gathered, the effect of using some of those characteristics as predictors in classification tasks and the effect
of higher resolution images on classification accuracy. We then explore semi-supervised applications; we
can leverage the high quantity of hand-written digits data sets already existing online to improve the
accuracy of various classifications task. Finally, we demonstrate the generative perspective offered by
this new data set.

In this chapter we (1) introduce a new data set we collected; the data set provides new research
opportunities and we (2) provide a thorough analysis of the data set that establishes benchmarks and
showcases some of the new opportunities made possible with this new data set. Finally, we (3) provide
preliminary results of controllable content generation, one of our long-term ongoing research projects.
The main contributions of this chapter were introduced first in our article Analysis of a high-resolution
hand-written digit data set with writer characteristics[10] currently under review.

7.1 Introduction
Modern computer vision algorithms have become impressively good at identifying the content of a
complex image. A scanned hand-written document is an example of a complex image for which many
algorithms were developed. In this case, the task assigned to the algorithm is to identify letters, digits
and later words and sentences. In hand-written document analysis, the MNIST data set introduced by
LeCun & al. [95] quickly became a benchmark for hand-written digits recognition and is now a rite of
passage for computer vision algorithms. Usually, MNIST is used for a simple task, try to identify the
digit in new hand-written digit images given a training set of labelled hand-written digit images.

In this project, we explore the potential of modern computer vision algorithm for a wider range of
inference tasks on hand-written digits. For instance, we will tackle the writer identification problem

90

Chapter 7. HWD+ data set: a new computer vision data set 91

which is a common problem in criminology or historical research. Broadly speaking, if more labels
were attached to an image, could we successfully extract other useful information out of those images?
Our goal is to rely on modern computer vision algorithms to replace feature engineering (handcrafted
features). Based on the recent results obtained by Adak et al. [1] it appears that auto-derived features
outperform feature engineering and this what we are hoping to exploit here.

We tackle the well-established task of writer identification, but also statistical inference of writer
characteristics. We also discuss new research opportunities created with this data set. Typically, com-
puter vision algorithms are build to identify the content of the images but the tasks we tackle here are
slightly more complex has we hope to predict writer characteristics that should affect only subtle details
of the image. Our contribution is two-fold; first, we introduce and distribute a new data set that we
collected, HWD+, containing hand-written digit images in high-resolution and various writer charac-
teristics. This data set can be utilized as a standalone data set and also in conjuncture with MNIST
for semi-supervised learning projects. Second, we perform a first analysis of the data set under both
the supervised and semi-supervised paradigm. We also showcase how to use this data set to experiment
with controlled image generation.

The remaining of this chapter is organized as follows: we discuss the related publications in Section
2. Section 3 introduces the new data set we collected. Following this, we introduce the algorithms used
for our first analysis in Section 4. Section 5 contains the results of our analysis.

7.2 Related work
In the contributed data set, we collected various characteristics about our writers and also assigned a
writer ID to each writer. Consequently, one natural problem to tackle is writer identification. This
problem has been extensively studied in the past and is still a relevant problem in forensics. A recent
publication from Adak et al. [1] attempts to solve a writer identification problem and compares the
performances of models that rely on hand-crafted feature against models with auto-derived features.
Slightly before that, Xiong et al. [153] produced one of the most recent surveys comparing various
modern writer identification algorithms. A result shared across both articles [153, 1] and highlighted in
a comprehensive review [122] is that auto-derived feature models perform better than feature engineering
and thus we rely on auto-derived feature models in this analysis.

One of the tasks we’ve established for this research project was to assess the abilities of modern
computer vision algorithms to infer some of the writer’s characteristics. Most literature that discusses
writer characteristics addresses graphology; the analysis of hand-writing patterns in order to identify
psychological traits of writers. However, serious studies on graphology demonstrate that it is more a
pseudo-science than anything else [87]. As a result, we focus this works on measurable characteristics
such as age, gender or native language. We are interested in determining the feasibility of predicting
such characteristics based on handwritten digits.

When considering the identification of the digits themselves, the MNIST data set inspired a gigantic
amount of publications. The first article to discuss this data set [95] was published in 1998 and introduced
the data set and compared the prediction accuracy of multiple classification methods. The two best

Chapter 7. HWD+ data set: a new computer vision data set 92

performing algorithms were a committee of deep convolutional neural networks (CNN) and a support
vector machine (SVM) with test error rates as low as 0.7% and 0.8% respectively. This article really
set the tone for future computer vision publications by establishing the sheer dominance both in terms
of accuracy and memory requirements of CNNs. It was a pivotal point into explaining and empirically
proving the benefits of automated feature extraction. It has also established the MNIST data as an
important benchmark data set.

Since then the best results obtained from a SVM algorithm was obtained in 2002 [38] with a 0.56%
error rate. Simple techniques that require no training, such as KNN, have achieved higher accuracy
(0.54% error rate) by allowing the algorithm to search into a set of distorted images [81]. The lowest
error rate (0.35%) achieved by a single NN was reported in 2010 [31]. Finally, in 2012 a committee of 35
CNNs achieved a 0.23% test error rate [32]. A problem with MNIST is that current algorithms achieve
a classification accuracy that is so high that it leaves room only for marginal improvements. The true
usefulness of these improvements is hard to evaluate [59] as it might be caused to details that are specific
to the MNIST data set and thus aren’t real improvement applicable to new problems. In other words,
it is possible that MNIST has been overused and that some new models are overfitting this data set.

Finally, let us address related data sets. As we already mentioned, our data set is quite similar to the
MNSIT data set [94]. Other digit image data sets also became quite popular such as the SVHN data set
[111] which contains images of house numbers in Google Street View images. The only label included
in those data set is the digit itself and supervised tasks are directed at digit classification. Our data
set, HWD+, offers more opportunities since it contains various characteristics and writer identification.
Furthermore, our data set also contains high-resolution images.

For writer identification, there exist multiple text-written data set. For instance, the CEDAR (Center
of Excellence for Document Analysis and Recognition) [25, ?] developed multiple data sets containing
either only letters, continuous text or signatures.

There exist various massive multi-labels data sets online such as CelebA [101], DeepFashion [100] and
DeepFashion2 [52] that contains images in high resolution and multiple labels. However these data sets
can be overwhelmingly large and require anyone who wishes to use them to have access to multiple GPUs
in order to experiment with them. Our new data set, the HWD+ data set, is much more approachable.
It offers multiple labels and high resolution images but also a 28 by 28 pixel alternatives for those who
wishes to simply plug in this new data set in a code already set up for MNIST or SVHN.

7.3 Data set
We named our Hand-Written Digits data set HWD+. The plus sign stands for the additional writer
characteristics collected. To collect a valuable data set, we followed some recommendations included in
a recent article published by Rehman et al. [123]. The same authors noted in another article [122] how
few existing data sets have a large enough data size to utilize modern computer vision architecture for
writer identification; our data set is a contribution in that aspect.

The HWD+ data set contains 13,580 images from 97 different writers. Images were collected in a
high resolution of 500 by 500 pixels in a shades-of-grey format. We also collected various information

Chapter 7. HWD+ data set: a new computer vision data set 93

about the writers. We believe our data set has a weak signal for some variables and thus leave plenty of
room for improvement in contrast to the popular MNIST data set where almost all algorithms achieve
a good performance and where top-of-the-line algorithms achieve such a high accuracy that it becomes
difficult to distinguish their performances.

We believe that the large resolution and the set of writer characteristics collected will lead to new
questions and findings. It is a unique data set that could be used in multiple fashions; this is why this
section carefully explains how to the data was gathered and processed into the data set now publicly
available online [8].

7.3.1 Data gathering

Our data gathering efforts were drastically affected by the 2020 COVID-19 pandemic. We hoped to
sample a large number of volunteers, had already bought the necessary material and planned our data
gathering procedure. Unfortunately, the social distancing efforts forced us to settle on a smaller size
data set with a reduced number of writers that were not randomly sampled. For this reason, it would
not be responsible to use this data set for inference or to establish causality. Thankfully, we can still
establish the predictability of various variables, compare computer vision models and much more.

Outside of uncontrollable events we made sure to gather a data set in a standardized manner that
we believe contains interesting information. Every writer was given 2 pages containing a one inch square
grid of 10 rows by 7 columns. Writers were asked to fill these pages with digits, 2 rows per digits for a
total of 14 replications per digits as seen in Figure 7.1. Every writer was given a new Sharpie pen.

Figure 7.1: Example of the collected images for a single writer.

Following this, the pages of handwritten digits were attached to their user identification (ID). We also
collected the following writers characteristics : (1) age, (2) biological gender, (3) height, (4) language

https://drive.google.com/drive/folders/1f2o1kjXLvcxRgtmMMuDkA2PQ5Zato4Or

Chapter 7. HWD+ data set: a new computer vision data set 94

learned in elementary school, (5) handedness of the writer, (6) education level and (7) main medium
used to write. Characteristics (1), (2), (3) and (5) are self-explanatory. For (4) we were interested to find
out if different educational system led to different digit writing styles. We initially assumed that there
could be a noticeable difference between writers who were taught with the Roman alphabet and those
who were taught a Chinese or an Arabic alphabet. The educational level (6) was encoded as a four-
level categorical variables were the first level represents high school, the second level means the writer
completed an undergraduate program, the third level is assigned to writers who completed a master’s
degree or a Ph.D and we finally added a fourth level for young kids who did not complete high school
yet. Finally, for the most commonly used writing medium (7), writers were asked to choose between
handwriting, keyboard or other where the latest category was commonly cellphone or electronic pen.

As previously mentioned, the COVID-19 pandemic drastically slowed down our data collecting effort
and at the moment of submitting this article we are still actively collecting more data. We plan to
update our database in the coming months in order to further increase data size. The one currently
available contains 97 different writers for a total of 13,580 images.

7.3.2 Data processing

All of the pages collected were scanned using the same machine with the same settings: shades-of-gray
and 600 pixels per inches. These pages were then processed through a script that would take off the
edges of the pages and divide the grid into 600 by 600 pixels squares. We trimmed of 50 pixels off the
four sides of every image to trim off the actual grid and the result is a collection of 500 by 500 pixels
images.

Those images were imported in Python where they were attached to their writer ID, the seven
characteristics previously discussed and the digit label. These images are stored as shades of grey
images, thus they are composed of a single channel taking values between 0 and 255. When images are
scanned, some of the white parts of the images lose some of their purity and thus we have set to 255
every pixel that had a value above 200. The digits were not centred, not scaled and not rotated. These
500 by 500 pixels images form the completed data set available.

For simplicity we also produced two other data sets with different images size. One data set contains
100 by 100 pixels images. This still is a rather high resolution but it is much faster to run computer
vision algorithms on these images than on their 500 by 500 counterparts. We also produced a data set
of size 28 by 28 as it is the size of images in the MNIST data set. This allows researchers to use already
existing code set up for MNIST and simply swap data sets. The 28 by 28 data set could also be used in
conjecture with the MNIST data set for semi-supervised projects. The fact that it is similar to MNIST
but very different at the same time should allow us to understand the problems related to the massive
use of MNIST in the recent years. Image compression was done using the open CV [17] Python library.

We have done very few pre-processing compared to other popular data sets by choice. To begin, we
believe that size and skwedness are genuine writing characteristics that might contain valuable informa-
tion about the writer and we did not want to discard that information. Thus, we decided to release the
data sets detailed above with as little pre-processing as possible.

Figure 7.2 contains a sample of what the images in the data set look like.

Chapter 7. HWD+ data set: a new computer vision data set 95

Figure 7.2: Sample of 45 images.

7.4 Computer Vision Algorithms
Two models are central for our experiments. We briefly introduce them in this section and explain why
we use them. Our analysis is divided in two parts; a supervised learning analysis and an unsupervised
learning analysis.

7.4.1 Convolutional Neural Networks for supervised learning

Multilayer neural networks (NN) have been extremely popular in recent years as a universal function
estimator that can be fit using gradient-based approaches. They can be used as a model themselves or
as part of other models, for instance they are used in VAEs as explained in Section 7.4.2. In this project,
we will use NNs as prediction function where the inputs are the pixels of an image and the output is
either the label, the writer ID or any other variable we are trying to predict. More specifically we will
use CNNs as introduced in Section 2.1.5.

Figure 7.3: A figure provided by LeCun [95] which illustrates LeNet-5, a CNN architecture.

LeNet-5 illustrated in Figure 7.3 was introduced by LeCun in the same paper that introduces MNIST
[95]. It contains a succession of convolution layers, pooling stages and conclude with fully connected
layer before the 10-level output. By changing the size of the output layer we adapt LeNet-5 to multiple
classification tasks. We use architectures similar to LeNet-5 as classifiers for our experiments.

7.4.2 Variational AutoEncoders for semi-supervised learning

In our experiments we will be working with slight variations of the VAE introduced in Section 2.2.3
where we also include a set of selected labels y such as the digit or the writer ID or the digit. These
models were established for semi-supervised problems. Briefly, the idea is to make use of an unlabelled
data set Su in order to improve the prediction accuracy we would get by training only with the labelled

Chapter 7. HWD+ data set: a new computer vision data set 96

data set Sl. We will also examine the generative abilities of such model; we are curious to find out how
much more control over the generative process we gain by adding labels y into the model.

We coded and experimented with two different models, first the M2 model proposed by Kingma
[85, 83].

zy

x

(a) Generative network. It assumes pθ(x, z,y) =
pθ(z)pθ(y)pθ(x|z, y).

zy

x

(b) Inference network. Given observations x and label y
we can infer the latent variable using qφ(z|x, y). When
y is missing we can infer is using qφ(y|x).

Figure 7.4: Graphical representation of the two networks that makes up the M2 model.

To obtain an objective function for semi-supervised learning we have to consider both label and
unlabelled data separately. In the first case, we have the label and the resulting ELBO is

ln pθ(x,y) ≥ Eq(z|x,y) [ln pθ(z) + ln pθ(y) + ln pθ(x|z, y)− ln qφ(z|x, y)] = L(x, y), (7.1)

and for unlabelled data, the ELBO is

ln pθ(x) ≥ Eq(z,y|x) [ln pθ(z) + ln pθ(y) + ln pθ(x|z, y)− ln qφ(z,y|x)]

=
∑
y

[qφ(y|x)(L(x, y))] +H(qφ(y|x)) = U(x), (7.2)

where H is the entropy of the distribution.

The bound on the entire data set is

J =
∑
Sl

L(x, y) +
∑
Su

U(x). (7.3)

To complete our brief introduction of the M2 model, one might notice that the encoding function used
as classifiers qφ(y|x) only appears in U(x) and thus is never actually trained on labelled data. To rectify
this situation, Kingma proposed to add a term to J resulting in the following objective function

J α = J + αESl
[− ln qφ(y|x)] , (7.4)

where α is an hyper-parameter that controls the relative weight between generative and discriminative
learning. The bigger α is the closer we are to obtain the same classifier obtained using strictly the labelled
data; in a way the whole VAE machinery can be perceived as regularization that prevents overfitting
the training labelled point. More details about the M2 model can be found in various publications
[85, 83, 121].

Chapter 7. HWD+ data set: a new computer vision data set 97

Finally, we have implemented the SDGM proposed by Maaløe et al. [107, 108, 121]. The model relies
on auxiliary variables [2] to improve the expressive power of both the inference and generative model.

zy

x

a

(a) Generative network. It assumes pθ(x, z,y,a) =
pθ(z)pθ(y)pθ(a|z, y)pθ(x|z, y, a).

zy

x

a

(b) Inference network. We can infer y using qφ(y|a, x)
and the latent representation z using qφ(z|a, x, y).

Figure 7.5: Graphical representation of the two networks that makes up the SDGM model.

Figure 7.5 is the graphical representation of the SDGM. Similarly the objective function has a com-
ponent for labelled observations, a component for unlabelled observations and an extra term to ensure
that qφ(y|a, x) is trained with labelled observations. More details about the SDGM can be found in
various publications [107, 108, 121].

7.5 Experiments
In this section we tackle both supervised and semi-supervised learning problems. All of our experiments
were performed using Python [150] and the Pytorch library [115]. After experimenting with multiple
optimizers, we settled on Adam [84].

There are two main purposes for these experiments. First, we want to explore our data set, get to
know its structure better, detect some of the patterns there might exist and establish the first benchmarks
for some of the classification problems. Second, we want to showcase some of the new problems that can
be tackled with this new data set.

7.5.1 Supervised learning

In this section, we explore our data and establish the first benchmarks attainable for various classification
tasks. We approach multiple simple classification problems using four models that were previously
successful; we implemented Le-Net5 [95], a deep fully-connected NN based on the work of Ciresan et al.
[31], a committee of 25 CNN [32] and finally a committee of 25 deep NN. Le-Net5 [95] was selected as
our default CNN; it is introduced in the same paper that introduced the MNIST data set. We included
a deep NN based on the work of Ciresan et al. [31] who demonstrated that a very deep and large NN
performs as well as a CNN for digit prediction. We included a committee of CNN since ensemble models
have the best classification accuracy on the MNIST data set. Finally, we included a committee of deep
NN for comparative purposes.

Second we address some possible new problems we can approach with this new data set. We assess

Chapter 7. HWD+ data set: a new computer vision data set 98

how higher resolution affects classification performances and how using writer characteristics as predic-
tors affects the prediction accuracy. We do not address multi-label classification problems in this article,
but this it is another problem that can be tackled with this data set that could not be tackled with
MNIST.

The single Le-Net5 CNN and the deep NN are fit 50 times where each time we randomized which
images are in the training set and the testing set. We fit both the ensemble models 15 times with once
again randomized training and test set for each trial.

Image classification

As already mentioned we wish to establish the first benchmark but also the existence of some signal;
thus we often time compare our results with the naive classifier, which we define here as a classifier that
always votes on the majority class. Readers are invited to take a look at the descriptive statistic table
in the appendix to get a rough idea of the performance of such naive classifier in this analysis.

For some of these experiments we divide our data set into a training set and a testing set in a way
that both sets contain every writer; the training set contains 10 images of every digit of every writer
and the test set contains 4 images of every digit of every writer. We named this process partitioning by
digits. This partitioning will be used when predicting the digit and the ID. To better assess the actual
predictability of the writer characteristics we created another way to partition training data from test
data; this time we split training and test sets by participants, randomly assigning 70% of the writers
to be in the training set and 30% in the test set. This way the writers in the test set have never been
observed during training. We refer to this as partitioning by individuals.

LeNet-5 Comm. LeNet-5 Deep NN Comm. Deep NN
Mean Std Mean Std Mean Std Mean Std

Digit 0.9399 0.0143 0.9762 0.0013 0.9192 0.0160 0.9340 0.0029
ID 0.3473 0.0136 0.6195 0.0063 0.4268 0.0077 0.5012 0.0049

Gender 0.5367 0.0183 0.5483 0.0372 0.5394 0.0208 0.5309 0.0219
Language 0.6792 0.0322 0.7621 0.0626 0.6752 0.0604 0.7149 0.0408

Hand 0.7940 0.0285 0.8304 0.0499 0.7973 0.0275 0.8232 0.0377
Education Level 0.4117 0.0222 0.4726 0.0343 0.4147 0.0393 0.4253 0.0405
Writing Medium 0.4585 0.0225 0.4782 0.0372 0.4668 0.0189 0.4714 0.0249

Table 7.1: Mean and standard deviation of the prediction accuracy for simple classification tasks

In the table 7.1 we see that this data set has a very high signal with respect to the digit. HWD+ is
of much smaller size and less processed than MNIST but nonetheless a committee of CNNs reaches close
to 98% accuracy on average. Strictly for digits classification our data set is a good alternative to MNIST
and should allow researchers to easily assess the impact of image processing on classifier performances.

Next, let us look at writer identification. The performance of the committee is quite impressive as
observed in table 7.1, accurately predicting the writer 62% of the time, given we have a pool of 97 writers
this is way above the performances of the naive classifier.

Let us now discuss the prediction of the various characteristics collected. As we previously discussed,
we used a different data set partitioning for the writer characteristics. The reason is quite simple; the

Chapter 7. HWD+ data set: a new computer vision data set 99

CNN techniques are so good at predicting distinct style related to IDs, as shown by the high performance
of the committee, that the model could map images to IDs and then IDs to characteristics. This is not
exactly identifying writing patterns that are specific to some of the writer characteristics. Thus, we
implemented partitioning by individuals for writer characteristics to make sure the algorithm actually
tries to learn effects of the characteristics on the writing styles that are shared among writers.

Most of the results are worst or even with the naive classifier who simply selects the majority class.
However, we noticed in table 7.1 that the improvement when using a committee of CNNs over a single
CNN is statistically significant when predicting every characteristics except gender and writing medium;
thus there might some signal for native language, handedness and education level. The improvement
in table 7.1 is specifically important when predicting the writer ID; almost doubling the predictive
performance over the simple LeNet-5. We believe the variables for which we observe a significant increase
in prediction accuracy when using a committee are predictable and this improvement is a consequence
of the existence of a signal. There might be some ways to further improve the prediction accuracy in
order to surpass the naive classifier for those classification tasks.

We achieved one of our main goals to create a data set with variables with various predictability: we
can achieve high accuracy when predicting the digit, the ID seems to lead to widely different prediction
performances but is predictable, some characteristics, such as native language, handedness and education
level, are weakly related with the images and finally the gender and usual writing medium seem to be
too noisy to be predicted using only digit images.

We also noticed the relatively good performances of the deep NN which supports the results of Ciseran
et al. [31]. Additionally, we included committees of deep NNs to better understand the difference between
LeNet-5 and the deep NN. We know that unstable algorithms tend to benefit more from aggregating
[19] and here we see that LeNet-5 benefits more from the aggregation than the deep NN. This would
suggest that fully connected deep NNs are more stable than CNN classifiers. In other words, with slightly
different data sets, CNN classifiers are more different than deep NNs which stay relatively the same.

High resolution images classification

In the next two sections, we experiment with tasks that are specific to our new data set. In this section
we assess the effect of higher resolution images on the classification performances of CNNs. Being able
to provide users with images as high resolution as 500 by 500 pixels is something offered by very few
data sets that often contain very small images. However, in this section what we call high-resolution
images are 100 by 100 pixels images.

We observe a statistically significant increase in prediction accuracy for the high-resolution image
over the low-resolution one when predicting the digit, the writer ID, the first language, the writer
handedness and the education level of the writer in table 7.2. These are the exact same variables
for which the committee also improved on the benchmark LeNet-5 in table 7.1. Even though the
predictive performance of LeNet-5 is equivalent to the naive classifier for some of those variables, those
improvements when using a committee or higher resolution images lead us to believe that those variables
are predictable in some way. In other words, there must exists some signal between the images and those
variables.

Chapter 7. HWD+ data set: a new computer vision data set 100

LeNet-5 (28x28) Comm. (28x28) LeNet-5 (100x100)
Mean Std Mean Std Mean Std

Digit 0.9399 0.0143 0.9762 0.0013 0.9683 0.0044
ID 0.3473 0.0136 0.6195 0.0063 0.3675 0.0224

Gender 0.5367 0.0183 0.5483 0.0372 0.5354 0.0410
Language 0.6792 0.0322 0.7621 0.0626 0.7284 0.0441

Hand 0.7940 0.0285 0.8304 0.0499 0.8129 0.0355
Education Level 0.4117 0.0222 0.4726 0.0343 0.4466 0.0368
Writing Medium 0.4585 0.0225 0.4782 0.0372 0.4612 0.0234

Table 7.2: Mean and standard deviation of the prediction accuracy for simple classification tasks on low-
resolution images (single LeNet-5 and committee) compared to high-resolution images (single LeNet-5).

The results here are intuitive: the classifier benefits from higher resolution images since they are
richer in information. However, it should not be surprising that it also increased the computational
cost. For instance, we could not fit committees of LeNet-5 classifiers on the high-resolution images on
a single GPU (GeForce RTX 2070 Super 8Gb Ram) due to lack of memory. We can get around those
problems by sending our tasks to servers online but we think it is important to make sure the algorithms
we develop can run on a single computer as it makes the algorithms available to a broader audience.
Additionally, as data sets get larger and larger we have to address the scalability of such algorithms.
This data set offers the opportunity to analyse such scalability on a simple digit prediction task.

When we compare the gains made from richer information to the gains made from better algorithms
we notice something very interesting. Training a single CNN on the high-resolution images is 25 times
slower than training a single CNN on the low-resolutions images. Consequently, training a committee
of 25 CNNs on the low-resolution images takes a similar amount of time than training a single CNN on
high-resolution images. We see in table 7.2 that the ensemble of classifiers trained on the low-resolution
data set performs better than the single LeNet-5 trained on a richer data set. Of course we expect a
committee of LeNet-5 trained on the richer data set to have higher performances than the alternatives
discussed but this is not the point we are trying to get across. Our results reveal that the predictive
improvement provided by using an ensemble technique is higher than the improvement provided by
getting a data set with twelve times as many pixels for a fixed run-time.

Image classification with predictors

In this section we include some of the collected information as predictors to see how it changes the
performances of the Le-Net5 classifier, once again something new that our data set enables. Moreover,
we are interested in understanding the potential contribution of additional information in images clas-
sification. For instance, we believe it would be a contribution to forensics if we establish that providing
the digit (or the word) to the algorithm increases the accuracy when predicting the writer.

We experiment with two simple tasks: in the first experiment we try to classify images according to
their digit and we incorporate the writer ID as an additional predictor. Next, we do the opposite, we
classify images according to the writer ID while including the digit as an additional predictor. To do
so, we include a one-hot encoding vector for writer ID or the digit in the first fully connected layer of
LeNet-5. In other words, the additional predictors are incorporated immediately after the convolution
layers; the one-hot encoding vector of predictors is concatenated with the vector C5 of Figure 7.3. For

Chapter 7. HWD+ data set: a new computer vision data set 101

this experiment, we partitioned by digits the data set.

Images (LeNet-5) Images + (LeNet-5) Images (Com.) Images + (Com.)
Mean Std Mean Std Mean Std Mean Std

Digit 0.9399 0.0143 0.9551 0.0080 0.9762 0.0013 0.9812 0.0020
ID 0.3473 0.0136 0.3575 0.0192 0.6195 0.0063 0.6003 0.0042

Table 7.3: Mean and standard deviation of the prediction accuracy for simple classification tasks when
using only the image as predictors (Images) or the image and an additional predictor (Images +)

Including the writer ID as additional information significantly increases the accuracy when predicting
the digit. However, including the digit when predicting the ID actually decreased the prediction accuracy
of the committee.

These results warrant further investigation. For instance, there exist multiple way to integrate
additional information in a CNN classifier and this data set offers an opportunity to explore those.

7.5.2 Semi-supervised learning

In this section, we tackle two semi-supervised tasks using the two semi-supervised learning models
introduced in Section 7.4.2: the M2 model presented by Kingma and Wellington [85] and the SGDM
model established by Maaløe et al. [107, 108, 121]. Our first problem is to perform a semi-supervised
analysis where we use the MNIST data set as unlabelled observations.

The second task we focus on is image generation. We will briefly discuss and demonstrate the
generative abilities of the SGDM model using our data set. The multiple labels allows us to turn
multiple control knobs which imbue the generative process with much more control, consequently this is
a contribution towards what we call controllable content generation.

Semi-Supervised classification

We use the M2 model described in Section 7.4.2 to predict the Digit and the ID in our images while
increasing our data set size with some unlabelled images, the MNIST data set. In our implementation of
the M2 model qφ(y|x) is parametrized by a LeNet-5 CNN. We assess the improvement produced when
including new unlabelled data compared to the results previously obtained in Section 7.5.1 when using
a single LeNet5.

This gives us a great perspective on semi-supervised classification. It is said that it is possible to
leverage unlabelled points from other data sets to improve the accuracy over the simple classifier and
we have argued it is due to some regularization. However fitting the compression and decompression
machinery does increase the run time needed to fit such semi-supervised model.

Table 7.4 shows a significant increase in accuracy when using the semi-supervised model. These
results are surprising for us given how standardised the MNIST data set is; it is widely different from
our data set with much less difference between writers. As we previously discussed the second term
of the objective function presented in equation 7.4 trains the classifier on labelled data and is precisely

Chapter 7. HWD+ data set: a new computer vision data set 102

LeNet-5 M2
Mean Std Mean Std

Digit 0.9399 0.0143 0.9542 0.0060
ID 0.3473 0.0136 0.4174 0.0099

Table 7.4: Mean and standard deviation of the prediction accuracy of the semi-supervised M2 model
trained on the HWD+ and MNIST data set compared to LeNet-5 trained on HWD+.

what we trained in previous sections. Further investigation on how the first term serves as regularization
should lead to interesting results. We will also investigate further in a subsequent research project the
idea of forming committees of classifiers fit under the semi-supervised paradigm.

Generative perspectives

In this section we showcase the opportunity our data set offers for controllable (conditional) image
generation. We fit the SDGM model described in Section 7.4.2 with both the ID and the digit as labels
y. Since the model is fitted for generative purpose, we use all of our data points, which are labelled,
and the classifier qφ(y|x) is completely irrelevant here. What we truly want, is to train pθ(x|z, a, y) to
generate images that are good looking and that respect the conditions imposed by y. In other word, the
images have to be of the right digit with the right style. Other details of the images are randomized
through z and a.

To showcase our results we have produced the figures below. We picked four different IDs with
drastically different styles to better illustrate that the algorithm was able to grasp some writing style
details. In the figures below, the first four columns are a sample of four real images and the six following
columns are generated images. We have selected the digits one, two, four, seven and nine has they
exhibit large differences in style from one writer to another.

The generator seemed to have learned very well the effect of the digit input. We see that the generated
digits are distinguishable and appropriate. This was to be expected based on previous experiments
[85, 83].

Additionally, the SDGM also learned the writing styles of the various writers as observed in Figure
7.6 . We observe that the size of generate images respect the size of the true images as well as multiple
details such as serifs and angles. For instance, the images of ones generated by the SDGM model has
serif for ID #12 and ID #70 and not the other two. Similarly the fours are open for ID #29 and #70
but closed for ID #12 and #14. Moreover, sevens take all kind of shape, sometimes the tail of the digit
nine is curved and so fort. Overall we are pleased with the results. We already knew it was possible to
generate images of a specified digit but the writer ID is something more subtle and those images prove
that the VAE model is able to grasp and mimic what makes writing styles different.

However, the generated images are blurry but this is a well-known problem for VAE generated images
[136, 68, 42, 41] and a problem we are not trying to fix in this chapter. It is also a problem we mentioned
previously in Chapter 5. As previously discussed we hope to fix those issues in future work.

These results are preliminary but they highlight the capacity of some well-developed generative
models to grasp subtle writing styles and the opportunity that our data provide to experiment with such
generative models.

Chapter 7. HWD+ data set: a new computer vision data set 103

(a) Generated images for ID #12

(b) Generated images for ID #14

(c) Generated images for ID #29

(d) Generated images for ID #70

Figure 7.6: Real images compared with generated images

Chapter 7. HWD+ data set: a new computer vision data set 104

7.6 Conclusion
In this chapter we introduced a brand new data set, HWD+, which contains almost 14 000 high-resolution
images of hand-written digits attached to a set of labels containing the digit, the writer ID and various
writer characteristics. The data set has been carefully collected and processed and is publicly available
online.

We have done a first analysis of the data set; we shown that our data contains variables with different
predictability making it a useful alternative to MNIST for testing new computer vision algorithms. We
especially considered classification tasks that were made possible with our new data set such as including
additional predictors in classification tasks or using higher-resolution images.

We have also proceed with a semi-supervised analysis. We have shown the potential use of our data
set in a semi-supervised classification task in tandem with the MNIST data set; the use of the M2 model
led to a more accurate LeNet-5 classifier. We have also shown the potential of our multi-label data set
for controllable image generation.

We believe our data set is the perfect testing ground for new creative controllable generative models.
Additionally, we would like investigate further the benefits of integrating MNIST for semi-supervised
task given the positive results we have obtained so far.

Appendix

Biological Gender Male Female
46 51

Handedness Right Left
84 13

Language (education) French English Other
75 16 6

Education Level No high school High school Bachelor Graduate
7 13 55 22

Usual writing medium Hand Keyboard Other
44 45 8

Table 7.5: Table of occurence at the time of submission. The data set contains 97 writers.

Chapter 8

Conclusion

8.1 Summary
In this thesis we explored multiple facets of modern data analysis which relies more on algorithmic
approaches every day. We began our work by visiting well-established techniques such as Decision
Trees and Random Forests and ended up with modern computer vision algorithms such as VAEs and
committees of CNNs.

In our first research project, we used a random forest to analyse a rich data set containing various
student academic information. The data contained multiple predictors and because we believe that there
might be high-order of interactions, a random forest was an appropriate model. Moreover the data set
did not respect most of the linear analysis assumptions. We obtained multiple interesting results: we
were able to both predict if a student succeeded and what would he major in using only the first year
of courses and grades with a respectable accuracy. Additionally, we performed a variable importance
analysis that revealed supporting evidence for the existence of grade inflation problem currently discussed
in the higher education research literature.

However, to proceed with this analysis we had to deal with a data set with missing values; this
inspired a follow-up project where we developed a new decision algorithm able to naturally manage
missing values without any imputation. This new algorithm, coined BESTree, was tested against many
simulated data sets and the motivating data set. Performances varied depending on the missingness
structure but we demonstrated the great performances of BEST when the data is MAR or MNAR.
Furthermore, BEST obtained the best performance compared to all other tested techniques on the real
data set. We built a R-package, BESTree, which makes this new algorithm available to anyone who
wishes to use it.

We then turned our attention to more modern statistical learning algorithms. One model that caught
our attention was the Variational AutoEncoder. We are currently working on a project describing the
current state of VAE implementations as there seems to be major differences between the theoretical
model proposed and the successful implementations.

We have also built our own model using the VAE architecture to analyse a survival analysis data set.
The data set contains information about young patients who suffered from Hodgkin-Lymphoma cancer.

105

Chapter 8. Conclusion 106

We employed multiple machine learning survival analysis models and were forced to admit that most
of these state-of-the-art models produced only slight improvements over the Cox Proportional Hazard
model.

We finally dived into the field of computer vision. We collected a data set that offers multiple research
opportunities and performed a first analysis. Using only a few images of digits, modern algorithms are
able to accurately identify the writer of an unobserved digit. We were also able to showcase the potential
generative problems approachable with the new data set. More precisely, we were able to build a VAE
model that could generate new images of a selected digit that mimics the writer style of a selected writer.

8.2 Discussion and opinions
We noticed a complete shift in the way the research was produced when comparing the two eras of
statistical learning: well-established models such as Random Forest and Support Vector Machine and
very recent models. The publication focus shifted from journals to conferences which increases the speed
of publication and has allowed for fast progress in many exciting research areas. On the other hand,
reviewers are more than often given a few days to review multiple articles and this has reduced the
quality of the average paper accepted. Bengio [14] recently published a blog post discussing the issues
with conference publications.

This opens up a lot of opportunities for statisticians, probabilists and mathematicians to make theo-
retical contributions to the field of statistical and machine learning. There are also plenty of opportunities
for applied statisticians since these new models are hard to interpret and hard to utilize to their full
potential which makes knowledgeable data scientists more valuable.

The future of machine learning relies on its ability to adapt to a wide range of problems. Right now,
machine learning techniques are extremely good for tasks like computer vision, recommendation systems
and natural language processing. However, those algorithms have problems establishing themselves as
solutions to well-studied statistical problems such as survival analysis, time series and spatial statistics.
Surely we can find papers here and there that claim that one particular model shows higher accuracy in
one of those tasks but there is no consensus yet and no well-establish machine learning model for many
typical statistical problems. This again, creates multiple opportunity for the rigorous development on
new statistical learning models suited for those tasks.

Above all, I believe the real difference between ML and statistics lies in the research approach. ML
is much more concerned with implementations while statistics are concerned with concepts and models.
In ML, the main contribution is usually an implementation and a paper with little to no algorithmic
contribution might be rejected on sight. On the other hand, providing a concept and some theory
supporting this concept is considered a contribution in statistics, so is a new analysis of a data set. This
leads two different ways of solving problems: when facing a new data set most computer scientists will
try to implement a new model until positive results while a statistician might be inspired by the data set
to come with a new theoretically sound model without implementing it or actually solving the problem.
Nonetheless these are generalizations, these fields are not monolithic blocks of some sort but rather large
communities filled with different researchers with individual goals and dreams.

Chapter 8. Conclusion 107

8.3 Future projects
At the moment, I want to follow up on my attempt to theoretically solve some of the VAE problems. I
want to follow the lead of the variance identifiability problem; this would make a significant contribution
to the VAE model. I am currently exploring a new measure for the gap between the data set’s second
moment and the second moment of the generative distribution obtained from training a VAE model.
I have established a fast way to compute those two second moment estimators and to summarize this
gap using matrix norm. This is the first step in my study of VAE’s abilities to correctly fit the second
moment a data set.

I would also like to invest some time on BESTree. To begin, I would like to integrate the new criteria
proposed in Section 4.5.5 and update the R-package accordingly. Additionally, I would like to further
optimize the R package by increasing its run speed using C++ (via Rcpp) when searching for the optimal
partitioning.

Similarly, a few of my public contributions deserve an update. I would like to update the SAVAE
code, comment it and make it public with examples and optimization insights. I would also like to
update the HWD+ data set as I receive more data.

Finally, I desire to keep working on my long-term project which controllable content generation; I
want to generalize generative models to allow them to improve the control the user has on the generative
process. The HWD+ data set featured in Chapter 7 could be used for that particular purpose; we can
try to generate an image while controlling both the digit and the writer style. Though I spent most of
time working with VAEs in the last years, Generative Adversarial Networks (GANs) [56] is the dominant
model for image generation and I want to get a grip of those in the coming projects.

Bibliography

[1] C. Adak, B. B. Chaudhuri, and M. Blumenstein. An empirical study on writer identification and
verification from intra-variable individual handwriting. IEEE Access, 7:24738–24758, 2019.

[2] F. V. Agakov and D. Barber. An auxiliary variational method. In International Conference on
Neural Information Processing, pages 561–566. Springer, 2004.

[3] A. Alemi, B. Poole, I.n Fischer, J. Dillon, R. A. Saurous, and K. P. Murphy. Fixing a broken
ELBO. In International Conference on Machine Learning, pages 159–168, 2018.

[4] A. Asperti and M. Trentin. Balancing reconstruction error and Kullback-Leibler divergence in
Variational Autoencoders. arXiv preprint arXiv:2002.07514, 2020.

[5] L. Aulck, N. Velagapudi, J. Blumenstock, and J. West. Predicting student dropout in higher
education. ArXiv e-prints, June 2016.

[6] M. A. Bailey, J. S. Rosenthal, and A. H. Yoon. Grades and incentives: assessing competing grade
point average measures and postgraduate outcomes. Studies in Higher Education, 41(9):1548–1562,
2016.

[7] T. Bar, V. Kadiyali, and A. Zussman. Grade Information and Grade Inflation: the Cornell exper-
iment. Journal of Economic Perspectivs, 23(3):93–108, 2009.

[8] C. Beaulac. Hwd+ database. https://drive.google.com/drive/folders/
1f2o1kjXLvcxRgtmMMuDkA2PQ5Zato4Or, 2020.

[9] C. Beaulac and J. S. Rosenthal. Predicting university students’ academic success and major using
random forests. Research in Higher Education, 60(7):1048–1064, 2019.

[10] C. Beaulac and J. S. Rosenthal. Analysis of a high-resolution hand-written digits data set with
writer characteristics. arXiv preprint arXiv:2011.07946, 2020.

[11] C. Beaulac and J. S. Rosenthal. BEST: a decision tree algorithm that handles missing values.
Computational Statistics, 35(3):1001–1026, 2020.

[12] C. Beaulac, J. S. Rosenthal, and D. Hodgson. A deep latent-variable model application to select
treatment intensity in survival analysis. Proceedings of the Machine Learning for Health (ML4H)
Workshop at NeurIPS 2018, 2018.

[13] C. Beaulac, J. S. Rosenthal, Q. Pei, D. Friedman, S. Wolden, and D. Hodgson. An evaluation of
machine learning techniques to predict the outcome of children treated for Hodgkin-Lymphoma
on the AHOD0031 trial. Applied Artificial Intelligence, 34(14):1100–1114, 2020.

108

https://drive.google.com/drive/folders/1f2o1kjXLvcxRgtmMMuDkA2PQ5Zato4Or
https://drive.google.com/drive/folders/1f2o1kjXLvcxRgtmMMuDkA2PQ5Zato4Or

Bibliography 109

[14] Y. Bengio. Time to rethink the publication process in machine learning. https://yoshuabengio.
org/2020/02/26/time-to-rethink-the-publication-process-in-machine-learning/, Feb
2020.

[15] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[16] I. Bou-Hamad, De. Larocque, and H. Ben-Ameur. A review of survival trees. Statistics Surveys,
5, 01 2011.

[17] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[18] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[19] L. Breiman. Heuristics of instability and stabilization in model selection. The Annals of Statistics,
24(6):2350–2383, 12 1996.

[20] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[21] L. Breiman. Statistical modeling: The two cultures. Statistical Science, 16(3):199–231, 2001.

[22] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth
and Brooks, Monterey, CA, 1984.

[23] D. V. Budescu. Dominance analysis: a new approach to the problem of relative importance of
predictors in multiple regression. Psychological bulletin, 114(3):542, 1993.

[24] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Lerchner. Un-
derstanding disentangling in beta-VAE. arXiv preprint arXiv:1804.03599, 2018.

[25] S.-H. Cha and S. N. Srihari. Assessing the authorship confidence of handwritten items. In Pro-
ceedings Fifth IEEE Workshop on Applications of Computer Vision, pages 42–47. IEEE, 2000.

[26] H.-C. Chen, R. L. Kodell, K. F. Cheng, and J. J. Chen. Assessment of performance of survival
prediction models for cancer prognosis. BMC Medical Research Methodology, 12(1):102, Jul 2012.

[27] R. Chen and S. L. DesJardins. Exploring the effects of financial aid on the gap in student dropout
risks by income level. Research in Higher Education, 49(1):1–18, 2008.

[28] R. Chen and S. L. DesJardins. Investigating the impact of financial aid on student dropout risks:
racial and ethnic differences. The Journal of Higher Education, 81(2):179–208, 2010.

[29] Y.-L. Chen, C.-L. Hsu, and S.-C. Chou. Constructing a multi-valued and multi-labeled decision
tree. Expert Systems with Applications, 25(2):199 – 209, 2003.

[30] S. Chou and C.-L. Hsu. MMDT: A multi-valued and multi-labeled decision tree classifier for data
mining. Expert Systems with Applications, 28(4):799–812, May 2005.

[31] D. C. Ciresan, U. Meier, L. Gambardella, and J. Schmidhuber. Deep, big, simple Neural Nets for
handwritten digit recognition. Neural Computation, 22:3207–3220, 2010.

[32] D. C. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image
classification. 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 3642–
3649, 2012.

https://yoshuabengio.org/2020/02/26/time-to-rethink-the-publication-process-in-machine-learning/
https://yoshuabengio.org/2020/02/26/time-to-rethink-the-publication-process-in-machine-learning/

Bibliography 110

[33] A. Clare and R. D. King. Knowledge discovery in multi-label phenotype data, pages 42–53. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

[34] D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B
(Methodological), 34(2):187–220, 1972.

[35] D. R. Cox. Partial likelihood. Biometrika, 62(2):269–276, 08 1975.

[36] B. C. Csáji. Approximation with artificial neural networks. Faculty of Sciences, Etvs Lornd
University, Hungary, 24:48, 2001.

[37] B. Dai, Y. Wang, J. Aston, G. Hua, and D. Wipf. Hidden talents of the variational autoencoder.
arXiv preprint arXiv:1706.05148, 2017.

[38] D. Decoste and B. Schölkopf. Training invariant support vector machines. Machine Learning,
46:161–190, March 2002.

[39] Y. Ding and J. S. Simonoff. An investigation of missing data methods for classification trees
applied to binary response data. Journal of Machine Learning Research, 11:131–170, March 2010.

[40] C. Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

[41] G. Dorta, S. Vicente, L. Agapito, N. D.F. Campbell, and I. Simpson. Structured uncertainty
prediction networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5477–5485, 2018.

[42] G. Dorta, S. Vicente, L. Agapito, N. D.F. Campbell, and I. Simpson. Training VAEs under
structured residuals. arXiv preprint arXiv:1804.01050, 2018.

[43] D. Eddelbuettel and R. Francois. Rcpp: Seamless R and C++ integration. Journal of Statistical
Software, 40(1):1–18, 2011.

[44] C. Evangelia, J. Ma, G. Collins, E. Steyerberg, J. Verbakel, and B. Van Calster. A systematic
review shows no performance benefit of machine learning over logistic regression for clinical pre-
diction models. Journal of Clinical Epidemiology, 110, 02 2019.

[45] A. J. Feelders. Handling missing data in trees: Surrogate splits or statistical imputation. In
Principles of Data Mining and Knowledge Discovery, 1999.

[46] S. Fotso. Deep Neural Networks for Survival Analysis Based on a Multi-Task Framework. arXiv
e-prints, page arXiv:1801.05512, Jan 2018.

[47] S. Fotso. PySurvival: Open source package for survival analysis modeling, 2019.

[48] D. L. Friedman, L. Chen, S. Wolden, A. Buxton, K. McCarten, T. J. FitzGerald, S. Kessel,
P. A. De Alarcon, A. R. Chen, N. Kobrinsky, P. Ehrlich, R. E. Hutchison, L. S. Constine, and
C. L. Schwartz. Dose-intensive response-based chemotherapy and radiation therapy for children
and adolescents with newly diagnosed intermediate-risk Hodgkin Lymphoma: A report from the
Children’s Oncology Group Study AHOD0031. Journal of Clinical Oncology, 32(32):3651–3658,
2014. PMID: 25311218.

Bibliography 111

[49] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

[50] J. Friedman, R. Kohavi, and Y. Yun. Lazy decision trees. 1, 09 1997.

[51] S. Gavankar and S. Sawarkar. Decision tree: Review of techniques for missing values at training,
testing and compatibility. In 2015 3rd International Conference on Artificial Intelligence, Modelling
and Simulation (AIMS), pages 122–126, Dec 2015.

[52] Y. Ge, R. Zhang, L. Wu, X. Wang, X. Tang, and P. Luo. DeepFashion2: A versatile benchmark for
detection, pose estimation, segmentation and re-identification of clothing images. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5332–5340, 2019.

[53] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning, 63(1):3–42,
2006.

[54] J. Glaesser and B. Cooper. Gender, parental education, and ability: their interacting roles in
predicting GCSE success. Cambridge Journal of Education, 42(4):463–480, 2012.

[55] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[56] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems,
pages 2672–2680, 2014.

[57] E. Graf, C. Schmoor, W. Sauerbrei, and M. Schumacher. Assessment and comparison of prognostic
classification schemes for survival data. Statistics in medicine, 18:2529–45, 09 1999.

[58] H. Haider. MTLR: Survival Prediction with Multi-Task Logistic Regression, 2019. R package
version 0.2.1.

[59] D. J. Hand. Classifier technology and the illusion of progress. Statistical Sciences, 21(1):1–14,
2006.

[60] F.E. Harrell Jr, K.L. Lee, and D.B. Mark. Multivariable prognostic models: issues in developing
models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in
medicine, 15(4):361–387, 1996.

[61] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2nd
edition, 2009.

[62] J. He, D. Spokoyny, G. Neubig, and T. Berg-Kirkpatrick. Lagging inference networks and posterior
collapse in variational autoencoders. arXiv preprint arXiv:1901.05534, 2019.

[63] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner.
beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR, 2(5):6,
2017.

[64] T. Hothorn, P. Bühlmann, S. Dudoit, A. Molinaro, and M. J. Van Der Laan. Survival ensembles.
Biostatistics, 7(3):355–373, 12 2005.

Bibliography 112

[65] T. Hothorn, K. Hornik, C. Strobl, and A. Zeileis. party: A Laboratory for Recursive Partytioning,
2019. R package version 1.3-3.

[66] T. Hothorn, K. Hornik, and A. Zeileis. Unbiased recursive partitioning: A conditional inference
framework. Journal of Computational and Graphical Statistics, 15(3):651–674, 2006.

[67] T. Hothorn, B. Lausen, A. Benner, and M. Radespiel-Tröger. Bagging survival trees. Statistics in
Medicine, 23(1):77–91, 2004.

[68] H. Huang, R. He, Z. Sun, and T. Tan. Introvae: Introspective variational autoencoders for pho-
tographic image synthesis. In Advances in neural information processing systems, pages 52–63,
2018.

[69] H. Ishwaran and U. B. Kogalur. Consistency of random survival forests. Statistics & Probability
Letters, 80(13):1056 – 1064, 2010.

[70] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer. Random survival forests. The
Annals of Applied Statistics, 2(3):841–860, 09 2008.

[71] H. Ishwaran, U. B. Kogalur, E. Z. Gorodeski, A. J. Minn, and M. S. Lauer. High-dimensional
variable selection for survival data. Journal of the American Statistical Association, 105(489):205–
217, 2010.

[72] H. Ishwaran and U.B. Kogalur. Fast Unified Random Forests for Survival, Regression, and Clas-
sification (RF-SRC), 2019. R package version 2.9.1.

[73] D. Jimenez Rezende, S. Mohamed, and D. Wierstra. Stochastic Backpropagation and Approximate
Inference in Deep Generative Models. ArXiv e-prints, January 2014.

[74] B. Jinga, T. Zhangh, Z. Wanga, Y. Jina, K. Liua, W. Qiua, L. Kea, Y. Suna, C. Hea, D. Houh,
L. Tanga, X. Lva, and C. Lia. A deep survival analysis method based on ranking. Artificial
Intelligence in Medicine, 98:1 – 9, 2019.

[75] S. Randall Johnson and F. King Stage. Academic engagement and student success: Do high-impact
practices mean higher graduation rates? The Journal of Higher Education, 0(0):1–29, 2018.

[76] V. E. Johnson. Grade Inflation : A Crisis in College Education. Springer, 2003.

[77] J. D. Kalbfleisch and R. L. Prentice. The statistical analysis of failure time data, volume 360. John
Wiley & Sons, 2011.

[78] R. Kappe and H. van der Flier. Predicting academic success in higher education: what’s more
important than being smart? European Journal of Psychology of Education, 27(4):605–619, 2012.

[79] J. Katzman. DeepSurv: Personalized treatment recommender system using a Cox proportional
hazards deep neural network, 2017.

[80] J. Katzman, U. Shaham, A. Cloninger, J. Bates, T. Jiang, and Y. Kluger. DeepSurv: Personalized
treatment recommender system using a Cox proportional hazards deep neural network. BMC
Medical Research Methodology, 18, 12 2018.

Bibliography 113

[81] D. Keysers, T. Deselaers, C. Gollan, and H. Ney. Deformation models for image recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(8):1422–1435, 2007.

[82] H. Kim and W.-Y. Loh. Classification trees with unbiased multiway splits. Journal of the American
Statistical Association, 96:589–604, 2001.

[83] D. P. Kingma. Variational Inference & Deep Learning : A New Synthesis. PhD thesis, Universiteit
van Armsterdam, 10 2017.

[84] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[85] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning with deep
generative models. In Advances in neural information processing systems, pages 3581–3589, 2014.

[86] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. ArXiv e-prints, December 2013.

[87] R. J. Klimoski and A. Rafaelu. Inferring personal qualities through handwriting analysis. Journal
of Occupational Psychology, 56(3):191–202, 1983.

[88] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques - Adaptive
Computation and Machine Learning. The MIT Press, 2009.

[89] I. Kononenko. On biases in estimating multi-valued attributes. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95, pages 1034–1040, San
Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[90] M. Kuhn and R. Quinlan. C50: C5.0 Decision Trees and Rule-Based Models, 2018. R package
version 0.1.2.

[91] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond pixels using
a learned similarity metric. In International conference on machine learning, pages 1558–1566,
2016.

[92] M. LeBlanc and J. Crowley. A review of tree-based prognostic models. Recent Advances in Clinical
Trial Design and Analysis, 75:113–124, 1995.

[93] M. E. Leblanc and J. P. Crowley. Relative risk trees for censored survival data. Biometrics, 48
2:411–25, 1992.

[94] Y. LeCun. Generalization and network design strategies. 1989.

[95] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[96] D. M. Leeds and S. L. DesJardins. The effect of merit aid on enrollment: A regression discontinuity
analysis of iowa’s national scholars award. Research in Higher Education, 56(5):471–495, Aug 2015.

[97] A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):18–22, 2002.

[98] R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. John Wiley & Sons, Inc.,
2002.

Bibliography 114

[99] Y. Liu, K. Gadepalli, M. Norouzi, G. E. Dahl, T. Kohlberger, A. Boyko, S. Venugopalan, A. Tim-
ofeev, P. Q. Nelson, G. S. Corrado, J. D. Hipp, L. Peng, and M. C. Stumpe. Detecting Cancer
Metastases on Gigapixel Pathology Images. arXiv e-prints, page arXiv:1703.02442, Mar 2017.

[100] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. Deepfashion: Powering robust clothes recognition
and retrieval with rich annotations. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[101] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings
of International Conference on Computer Vision (ICCV), December 2015.

[102] W.-Y. Loh. Regression trees with unbiased variable selection and interaction detection. Statistica
Sinica, 12:361–386, 2002.

[103] W.-Y. Loh and Y.-S. Shih. Split selection methods for classification trees. Statistica Sinica, 7:815–
840, 1997.

[104] C. Louizos, U. Shalit, J. Mooij, D. Sontag, R. Zemel, and M. Welling. Causal effect inference with
deep latent-variable models. ArXiv e-prints, May 2017.

[105] J. Lucas, G. Tucker, R. B. Grosse, and M. Norouzi. Don’t blame the ELBO! A linear VAE
perspective on posterior collapse. In Advances in Neural Information Processing Systems, pages
9408–9418, 2019.

[106] M. Luck, T. Sylvain, H. Cardinal, A. Lodi, and Y. Bengio. Deep learning for patient-specific kidney
graft survival analysis. CoRR, abs/1705.10245, 2017.

[107] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Improving semi-supervised learning
with auxiliary deep generative models. In NIPS Workshop on Advances in Approximate Bayesian
Inference, 2015.

[108] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep generative models.
arXiv preprint arXiv:1602.05473, 2016.

[109] J. S. Mills and K. R. Blankstein. Perfectionism, intrinsic vs extrinsic motivation, and motivated
strategies for learning: a multidimensional analysis of university students. Personality and Indi-
vidual Differences, 29(6):1191 – 1204, 2000.

[110] A. Nazábal, P. M. Olmos, Z. Ghahramani, and I. Valera. Handling incomplete heterogeneous data
using VAEs. ArXiv, abs/1807.03653, 2018.

[111] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images
with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature
Learning 2011, 2011.

[112] A. S. M. Niessen, R. R. Meijer, and J. N. Tendeiro. Predicting performance in higher education
using proximal predictors. PLOS ONE, 11(4):1–14, 04 2016.

[113] B. Ost. The role of peers and grades in determining major persistence in sciences. Economics of
Education Review, 29:923–934, 2010.

Bibliography 115

[114] E. Park. Manifold learning with variational auto-encoder for medical image analysis. Technical
report, Tech. Rep, 2015.

[115] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, S. Tejani, A.and Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

[116] A. Peters and T. Hothorn. ipred: Improved Predictors, 2019. R package version 0.9-9.

[117] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

[118] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2013.

[119] G. Rahman and Z. Islam. Missing value imputation using decision trees and decision forests by
splitting and merging records: Two novel techniques. Knowledge-Based Systems, 53:51 – 65, 2013.

[120] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semi-supervised learning with
ladder networks. In Advances in neural information processing systems, pages 3546–3554, 2015.

[121] R. Rastgoufard. Multi-label latent spaces with semi-supervised deep generative models. 2018.

[122] A. Rehman, S. Naz, and M. I. Razzak. Writer identification using machine learning approaches:
A comprehensive review. Multimedia Tools Appl., 78(8):10889–10931, April 2019.

[123] A. Rehman, S. Naz, M. I. Razzak, and I. A. Hameed. Automatic visual features for writer identi-
fication: A deep learning approach. IEEE Access, 7:17149–17157, 2019.

[124] A. Rodríguez-Ruiz, E. Krupinski, J.-J. Mordang, K. Schilling, S. H. Heywang-Köbrunner, I. Se-
chopoulos, and Ritse M. Mann. Detection of breast cancer with mammography: Effect of an
artificial intelligence support system. Radiology, 290(2):305–314, 2019. PMID: 30457482.

[125] A. Rodriguez-Ruiz, K. Lång, A. Gubern-Merida, M. Broeders, G. Gennaro, P. Clauser, T. H.
Helbich, M. Chevalier, T. Tan, T. Mertelmeier, M. G. Wallis, I. Andersson, S. Zackrisson, R. M.
Mann, and I. Sechopoulos. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mam-
mography: Comparison With 101 Radiologists. JNCI: Journal of the National Cancer Institute,
111(9):916–922, 03 2019.

[126] D. B. Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

[127] D. E. Rumelhart, G. E. Hinton, and R. J Williams. Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[128] O. Rybkin, K. Daniilidis, and S. Levine. Simple and effective VAE training with calibrated de-
coders. arXiv preprint arXiv:2006.13202, 2020.

Bibliography 116

[129] M. Saar-Tsechansky and F. Provost. Handling missing values when applying classification models.
Journal of Machine Learning Research, 8:1623–1657, December 2007.

[130] R. Sabot and J. Wakeman-Linn. Grade inflation and course choice. Journal of Economic Perspec-
tives, 5:159–170, 1991.

[131] J. L. Schafer and M. K. Olsen. Multiple imputation for multivariate missing-data problems: A
data analyst’s perspective. 33, 07 2000.

[132] S. Seaman, J. Galati, D. Jackson, and J. Carlin. What is meant by “missing at random”? Statistical
Science, 28(2):257–268, 05 2013.

[133] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algo-
rithms. Cambridge University Press, New York, NY, USA, 2014.

[134] N. Sidiropoulos, S. H. Sohi, N. Rapin, and F. O. Bagger. SinaPlot: an enhanced chart for simple
and truthful representation of single observations over multiple classes, 2017.

[135] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for Cox’s Proportional
Hazards model via coordinate descent. Journal of Statistical Software, Articles, 39(5):1–13, 2011.

[136] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. In Advances in neural information processing systems, pages 3483–3491, 2015.

[137] C. K. Sønderby, T. Raiko, S. K. Maaløe, L.and Sønderby, and O. Winther. Ladder variational
autoencoders. In Advances in neural information processing systems, pages 3738–3746, 2016.

[138] H. Steck, B. Krishnapuram, C. Dehing-Oberije, P. Lambin, and V. C. Raykar. On ranking in
survival analysis: Bounds on the concordance index. In Advances in Neural Information Processing
Systems 20, pages 1209–1216. Curran Associates, Inc., 2008.

[139] C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance
measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1):25, 2007.

[140] T. Therneau. A Package for Survival Analysis in R, 2021. R package version 3.2-10.

[141] T. Therneau and B. Atkinson. rpart: Recursive Partitioning and Regression Trees, 2018. R package
version 4.1-13.

[142] N. J. Tierney, F. A. Harden, M. J. Harden, and K. L. Mengersen. Using decision trees to understand
structure in missing data. BMJ Open, 5(6), 2015.

[143] M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal component analyzers. Neural
computation, 11(2):443–482, 1999.

[144] M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 61(3):611–622, 1999.

[145] J. Townsend, T. Bird, and D. Barber. Practical lossless compression with latent variables using
bits back coding. arXiv preprint arXiv:1901.04866, 2019.

Bibliography 117

[146] B. Twala. An empirical comparison of techniques for handling incomplete data using decision trees.
Applied Artificial Intelligence, 23(5):373–405, May 2009.

[147] B. Twala, M.C. Jones, and D. Hand. Good methods for coping with missing data in decision trees.
29:950–956, 05 2008.

[148] University of Toronto. Degree requirements (h.b.a., h.b.sc., bcom), 2017.

[149] S. van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations
in R. Journal of Statistical Software, 45(3):1–67, 2011.

[150] G. Van Rossum and F. L Drake Jr. Python tutorial. Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands, 1995.

[151] L. Wen, Y. Zhou, L. He, M. Zhou, and Z. Xu. Mutual information gradient estimation for repre-
sentation learning. arXiv preprint arXiv:2005.01123, 2020.

[152] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

[153] Y.-J. Xiong, Y. Lu, and P. S. P. Wang. Off-line text-independent writer recognition: A survey.
International Journal of Pattern Recognition and Artificial Intelligence, 31(05):1756008, 2017.

[154] C.-N. Yu, R. Greiner, Hsiu-Chin Lin, and V. Baracos. Learning patient-specific cancer survival
distributions as a sequence of dependent regressors. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24,
pages 1845–1853. Curran Associates, Inc., 2011.

[155] Y. Zhang and Z. Lu. Exploring semi-supervised variational autoencoders for biomedical relation
extraction. Methods, 166:112–119, 2019.

[156] L. Zhao and D. Feng. DNNSurv: Deep neural networks for survival analysis using pseudo values.
arXiv e-prints, page arXiv:1908.02337, Aug 2019.

	Introduction
	Preface
	Content of the thesis
	Contributions
	Organization

	Machine learning background
	Supervised learning
	Loss function
	Decision tree
	Random forests
	Neural networks
	Convolutional neural networks

	Unsupervised learning
	Principal component analysis
	Gaussian Mixture Model
	Variational autoencoders

	Analysis of an academic data set
	Introduction
	Literature review
	Predicting success
	Identifying important predictors

	Methodology
	Data
	Techniques
	Variable Importance in Random Forests
	Algorithms

	Results
	First research question : Predicting program completion
	Second research question : Predicting the major

	Conclusion

	BEST : A new decision tree algorithm that handles missing values
	Introduction
	Missing values
	Branch-Exclusive Splits Trees (BEST)
	Motivating Example
	Intuition
	Algorithm implementation
	Theoretical justification

	Related work
	Experiments : Simulated data sets
	MAR : Missingness depends on observed predictors
	MNAR : Missingness depends on missing values
	MAR : Missingness depends on the response
	Random forests and variable importance
	Simulations: takeaways and limitations

	Experiments : grades data set
	Predicting program completion
	Predicting the major
	Improved interpretability
	Real-world data set experiment takeaways

	Conclusion

	Variational Autoencoders: theory and implementations
	The simple variational autoencoder
	Maximization of the ELBO
	Practical uses

	Visualization of the simple VAE
	Algorithmic solutions
	Tradeoff between reconstruction and regularization
	Reconstruction term
	Modification to the ancestral sampling procedure
	Effect on the model optimized

	Issues with algorithmic solution
	Application issues
	Theoretical issues

	Future work
	Related literature
	Conclusion

	An evaluation of machine learning techniques in survival analysis
	Introduction
	Data set
	Survival Analysis models
	Benchmark : Cox Proportional Hazard Model
	Conventional statistical learning models
	Newly established models

	Survival Analysis Variational AutoEncoder
	Model distributions
	Fitting the parameters
	Prediction and decision-making

	Data analysis
	Evaluation metrics
	Comparative results
	Specifics about SAVAE

	Takeaways and Recommendations
	Conclusion

	HWD+ data set: a new computer vision data set
	Introduction
	Related work
	Data set
	Data gathering
	Data processing

	Computer Vision Algorithms
	Convolutional Neural Networks for supervised learning
	Variational AutoEncoders for semi-supervised learning

	Experiments
	Supervised learning
	Semi-supervised learning

	Conclusion

	Conclusion
	Summary
	Discussion and opinions
	Future projects

	Bibliography

