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ABSTRACT
We introduce a Markov Chain Monte Carlo (MCMC) method that is
designed to sample from target distributions with irregular geometry using
an adaptive scheme. In cases where targets exhibit non-Gaussian behavior,
we propose that adaptation should be regional rather than global. Our
algorithm minimizes the information projection component of the
Kullback–Leibler (KL) divergence between the proposal and target distribu-
tions to encourage proposals that are distributed similarly to the regional
geometry of the target. Unlike traditional adaptive MCMC, this procedure
rapidly adapts to the geometry of the target’s current position as it
explores the surrounding space without the need for many preexisting
samples. The divergence minimization algorithms are tested on target dis-
tributions with irregularly shaped modes and we provide results demon-
strating the effectiveness of our methods.
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1. Introduction

Markov Chain Monte Carlo (MCMC) is a class of algorithms designed to efficiently and effect-
ively sample from a diverse set of target distributions (Brooks et al. 2011). Classical MCMC meth-
ods perform excellently when the target is well-behaved and unimodal. However, when targets
exhibit unusual geometry or have multiple modes, core techniques such as random walk
Metropolis (RWM) tend to perform poorly. These are the challenges that motivate much active
MCMC research. In this paper, we propose an algorithm that specifically aims to effectively sam-
ple from irregular and non-Gaussian target distributions.

For targets with atypical geometry, adaptive MCMC has proven to outperform classical
MCMC (Haario, Saksman, and Tamminen 2001; Andrieu and Thoms 2008; Atchad�e et al. 2011).
One of the core ideas driving adaptive MCMC is that a proposal distribution that is similar in
shape to the target distribution will produce higher quality samples than a generic proposal. In
adaptive Random Walk Metropolis (aRWM), this is accomplished by proposing with the empir-
ical covariance matrix of the samples produced up to the current iteration. Thus, the proposals
improve as the algorithm progresses until, eventually, the empirical covariance matrix approaches
the hypothetical global optimal sampler. Convergence to the target distribution can be upheld
using the principles of containment and diminishing adaptation, or finite adaptation (Roberts and
Rosenthal 2007; Rosenthal 2011). However, aRWM does have its limitations. When the target
distribution exhibits highly irregular, non-Gaussian geometry, aRWM may not perform well
because a single optimal Gaussian proposal distribution as used by aRWM may not reflect the
local geometry in all regions of the target distribution.
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In this work, we expand on the idea that a global optimal proposal distribution may not be
effective and we instead discuss the idea of region-specific sampling. We introduce an algorithm
designed to sample effectively from unusual geometries by exploiting local information about the
target distribution. Instead of waiting for samples to be produced in order to trigger adaptation,
we use ideas from the recently popular stochastic variational inference class of methods
(Salimans, Kingma, and Welling 2015). By measuring the similarity between the target and pro-
posal distributions using the Kullback–Leibler (KL) Divergence, we use gradients to devise an
update rule that is not reliant on having an existing large batch of samples.

More specifically, consider a target distribution p and a family of proposal distributions to be
q 2 Q (Yamano 2009). Noting that the KL Divergence between two distributions is asymmetric,

we specifically focus on the I-projection of the KL Divergence, defined as DðqjjpÞ ¼ Eq log q
p

h i
:

The KL Divergence has two sides, the I- and M- projections, but we rely on the I-projection as it
tends to produce an underdispersed q that locks onto a specific mode of p, compared to the M-
projection which tends to overestimate the support of q (Murphy 2012). In other words, through
minimization, the I-projection produces a distribution similar to the local geometry of p. Such a
distribution is equipped to rapidly produce samples from oddly shaped regions of a target distri-
bution. We term this approach the divergence minimization (DM) sampler.

In addition, the DM sampler is inherently modular and can be easily integrated into other
MCMC methods. As an example, we implement the DM sampler as the non-tempered chain of a
two-chain parallel tempering algorithm, which we call Scout MCMC. Recall that parallel temper-
ing executes multiple chains simultaneously on the target with different levels of tempering, then
randomly swaps positions of the chains to improve mode discovery (Swendsen and Wang 1986;
Geyer 1991). The DM sampler component of Scout MCMC improves on the basic parallel tem-
pering procedure by offering immediate adaptation following swap moves.

Finally, we recognize that at each iteration, the covariance matrix produced by the gradient
update rule represents a proposal distribution adept at sampling from its local region. This gener-
ated proposal distribution can reasonably be used for nearby points, assuming some degree of
continuity. Thus, we introduce a two-stage extension to the DM sampler and Scout MCMC. In
the first stage, we gather proposal distributions using the DM sampler or Scout MCMC. Next, we
use these proposal distributions to characterize a non-adaptive Metropolis-Hastings algorithm.

Before discussing the specifics of the algorithms in Secs. 2 and 3, we first discuss a number of
relevant related works.

1.1. Related works

The DM sampler draws inspiration from Titsias and Dellaportas (2019). In this paper, the authors
optimize an objective function composed of the product of the entropy function and the average
proposal acceptance rate. The proposals for the adaptive MCMC algorithm are then based off of
gradient updates that aim to maximize this function, producing a wide range of proposals that
maintain a balance between entropy and acceptance rate. In addition to supporting significant
adaptation at early stages of a chain, Gradient-based Adaptive MCMC also allows for adaptation
upon rejecting a proposal, a noteworthy feature as most adaptive algorithms do not directly con-
sider the information offered by rejected samples.

While the entropy function is a general function applied to the entire distribution, the algo-
rithm that we present in this paper is based on the premise that, in cases with difficult geometry,
it is necessary to focus on specific local regions instead of the entire target distribution when
attempting to sample from the target distribution. This is accomplished by leveraging the I-
Projection of the target over the set of proposal distributions. The I-projection underestimates the
support of the target distribution and will hone in on one area as opposed to the entropy
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function which attempts to discover a range of samples from the entire target function at once
(Shannon 1948; Murphy 2012). This regional behavior helps to overcome limitations in the
Gaussian function class typically used for proposal distributions by reducing the current region of
interest into manageable pieces.

Within the broader adaptive MCMC literature, there are a number of proposals that use non-
parametric strategies to construct adaptive proposal distributions that asymptotically converge to
the target distribution. In Gilks, Best, and Tan (1995), the Adaptive Rejection Metropolis
Sampling (ARMS) algorithm iteratively constructs a piecewise linear proposal density in the log-
space that approximates the target density. As the sampler progresses, new support points are
collected that improve the approximation of the proposal to the target. The piecewise linear
approximation can then be used in the Metropolis-Hastings step within a Gibbs sampler.
Martino, Read, and Luengo (2015) build on the ARMS algorithm by improving the mechanism
by which support points are included in the construction of the proposal density such that all
regions of the target support are eligible for inclusion and Meyer, Cai, and Perron (2008) present
an alternative specification of ARMS that uses piecewise quadratic functions to construct the pro-
posal density. The ARMS family of algorithms have proven effective at improving the efficiency
of Gibbs samplers, particularly in settings where the conditional distributions are not well-known
and thus cannot be sampled from directly. To contrast with our own proposal, we note that the
ARMS algorithms are designed to construct proposals that approximate univariate targets,
whereas our focus is on leveraging the correlation structure found in local regions of a multivari-
ate target distribution.

Parallel tempering is another popular method, and is related to our Scout MCMC algorithm.
In parallel tempering, multiple chains are run simultaneously on the target distribution with dif-
ferent levels of tempering applied. The intuition behind parallel tempering is that in the highly
tempered chains, it will be easier to cross low-probability boundaries which can subsequently be
randomly swapped with the non-tempered chain for mixing (Swendsen and Wang 1986; Geyer
1991). However, parallel tempering does have its limitations. From a computational perspective,
executing many chains but ultimately only using the samples from the non-tempered chain is
burdensome.

Using parallel chains for similar purposes, in Craiu, Rosenthal, and Yang (2009), the authors
introduce the algorithm Inter-chain Adaptation (INCA), which uses multiple stages of sampling.
The first stage involves sampling the state space with parallel chains to partition the state space,
while the second stage uses these predetermined regions as a guide to sample from the target dis-
tribution. The acceptance probabilities of new proposed points then depend on the region in
which the current and proposed points reside.

Finally, the Jumping Adaptive Multimodal Sampler (JAMS) algorithm addresses the challenges
of multimodal sampling by front loading the computational burden of mode discovery, using
optimization techniques to search for modes and subsequently incorporating this information
into the sampling phase (Pompe, Holmes, and Łatuszy�nski 2019). In the sampling phase, dedi-
cated” jump moves” are used to move between modes directly. Once in a mode, any sampler
adept at unimodal sampling can be employed. Similar to how we incorporate the DM sampler
into parallel tempering to form Scout MCMC, one could envision an algorithm that links the
DM sampler to the JAMS algorithm to address both the irregular geometry and the multimodal
sampling challenges at once.

2. Divergence minimization sampler

We propose that the challenge of sampling from irregular geometries can be overcome by focus-
ing on smaller regions of a given target distribution that are simpler and can be adequately
sampled from using common proposal distributions such as the Gaussian proposal. This region-
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specific sampling scheme requires addressing two core issues: identifying regions of interest and
determining how best to sample from these regions. At the most granular level, each individual
point in the space could constitute its own region. The rationale is that every point has its own
unique surrounding geometry and thus there exists some optimal way to generate a new sample
when starting at each and every point.

The latter challenge characterizes the problem of identifying this optimal sampling procedure.
To address this issue, we propose using the I-projection component of the KL Divergence as a
similarity measure between the target and proposal distributions to construct proposals with simi-
lar geometry to the region around the current point (Murphy 2012). Defining the target distribu-
tion as p and the family of proposal distributions to be q 2 Q, the I-projection is

DðqjjpÞ ¼ Eq log q
p

h i
: In the context of an MCMC proposal, we consider the family of proposal

distributions to be Gaussian and the objective is to determine the covariance matrix that charac-
terizes the Gaussian with minimal divergence from the target distribution at the current point.
Such a proposal can be defined as:

qðyjxÞ � N x, LLT
� �

where x is the current position, y ¼ xþ L� is the proposal, � � Nð0,1Þ and L is the Cholesky fac-
tor of the proposal covariance matrix (Higham 2009).

2.1. Objective

To find a proposal distribution that minimizes the divergence with the local geometry of the tar-
get distribution, we consider using gradient updates performed at each iteration of the MCMC
chain. Meanwhile, we must be cognizant of the acceptance rate. In essence, we want to have both
a small I-projection so that the proposal and the target are similar, as well as a reasonably high
acceptance rate so that we are able to use the samples from our proposals. As such, we propose
the following as an objective function that balances both the exponential of the negative I-projec-
tion and the average acceptance rate of the proposal:

sðxÞ ¼ exp �bDðqjjpÞ� � � ð aðx, y; LÞqðyjxÞdy
In the above, b is a hyperparameter that balances the impact of the I-projection with the aver-

age Metropolis acceptance rate defined by:

aðx, y; LÞ ¼ min 1,
pðyÞ
pðxÞ

� �

where x is the current position, y is the proposal, and L is the proposal distribution Cholesky fac-
tor (Brooks et al. 2011). Notice the negative inside the exponential term of s(x). As the I-projec-
tion is non-negative, the negative exponent bounds the exponential term between 0 and 1 with
the maximum obtained when DðqjjpÞ ¼ 0: Also note that the average acceptance rate ranges
between 0 and 1. As a result of these bounds, s 2 ½0, 1� and is maximized when we have high
acceptance rates with a proposal that is similar to the target. Thus, the problem of identifying a
suitable proposal distribution has been reduced to maximizing s(x) where the optimal proposal
distribution at any given x can be characterized by the corresponding optimal Cholesky factor Lx
at the global optimum.

To make the objective function easier to manipulate, instead of optimizing s(x), we can opti-
mize the logarithm of s(x). That is:
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log sðxÞ ¼ �bDðqjjpÞ þ log
ð
aðx, y; LÞqðyjxÞdy

¼ �bEq log
qðyjxÞ
pðyÞ

� 	
þ log Eq aðx, y; LÞ� �

¼ bEq � log qðyjxÞ� �þ bEq log pðyÞ� �þ log Eq aðx, y; LÞ� �
¼ bHq þ bEq log pðyÞ� �þ log Eq aðx, y; LÞ� �

The above statement of log sðxÞ contains expectations entangled with both the p and q distri-
butions that precludes a closed form solution. In particular, notice that the final term is the loga-
rithm of an expectation. Such a term is certainly not ideal for optimization purposes. The most
advisable path forward to maximize log sðxÞ is to instead bound it below using Jensen’s inequal-
ity. We can then optimize the lower bound instead of the objective directly. Thus we have:

log sðxÞ � bHq þ bEq log pðyÞ� �þ Eq log aðx, y; LÞ� �
¼ bHq þ bEq log pðyÞ� �þ Eq log min 1,

pðyÞ
pðxÞ

� �� 	
¼ bHq þ bEq log pðyÞ� �þ Eq min 0, log pðyÞ � log pðxÞ
 �� �
¼ bHq þ bE� log pðxþ L�Þ� �þ E� min 0, log pðxþ L�Þ � log pðxÞ
 �� �
¼: J ðxÞ

J ðxÞ can be used as a lower bound for the objective function and for optimization. However,
while J ðxÞ is certainly simpler than log sðxÞ, a general closed form solution of the maximum at
each value of x is not attainable. Instead, we turn to iterative optimization methods. We choose
gradient ascent as a generally accessible method to maximize J ðxÞ:

Gradient ascent requires specifying the gradient of J ðxÞ with respect to the Cholesky factor L.
We leave the detailed derivation of the approximate gradient of J ðxÞ to Appendix A.1 and pre-
sent the final result here:

rLJ ðxÞ ¼ bdiag
1
L11

, :::,
1
Lkk

� 
þ 1

J

XJ
j¼1

b
pðxþ L�jÞ p

0ðxþ L�jÞ�Tj

þ 1
J

XJ
j¼1
rL min 0, log pðxþ L�jÞ � log pðxÞ
 �

:

where x is the current position, L is the current value of the Cholesky factor, and �j are a sample
of J standard normal values used to approximate the gradients of the expectations found in J :

Note further that the interior of the second summation in rLJ ðxÞ reduces into the following
two cases depending on the value of �j,

rL min 0, log pðxþ L�jÞ � log pðxÞ
 �

¼
0 if log pðxþ L�jÞ � log pðxÞ

1
pðxþ L�jÞ p

0ðxþ L�jÞ�Tj if log pðxþ L�jÞ < log pðxÞ :

8><
>:

The above gradient characterizes the gradient update rule Ltþ1 ¼ Lt þ crLJ ðxÞ where t is the
time step of gradient ascent and c is the step size used to maximize J ðxÞ: Here we make the

practical note that due to the presence of the pðxþ L�jÞ�1 term in the gradient, �j values that
result in proposals with negligible density can cause an explosion of the gradient. We thus set a
large threshold value of h to catch elements in the gradient matrix with absolute values greater
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than h, and set the offending values to 6h respectively. This event is rare in practice but more
common in tail geometries where the fraction of potentially offending proposals is higher.

Now, if we use this procedure to identify a value of L to maximize J ðxÞ for each point x, call
these Lx, we could then characterize a Metropolis-Hastings algorithm using these Cholesky
factors.

However, we recognize that a great number of steps would be necessary to optimize J ðxÞ to
within some small error threshold. As gradient updates can be computationally expensive, execut-
ing a complete run of gradient ascent at every iteration of an MCMC algorithm would be
untenable.

We propose that instead of fully optimizing J ðxÞ at every iteration, a process that requires
many expensive steps, we perform one step of gradient ascent at every MCMC iteration. This will
provide approximations of the point-wise optimal sampler discussed so far with the following jus-
tifications. First, we note that the early steps of gradient ascent tend to be the most influential
and thus a complete run of gradient ascent is not absolutely necessary. Secondly, in practical con-
texts, changes in geometry are typically gradual which implies that nearby points experience simi-
lar behavior, and by extension, similar gradients. While the proposal distribution is not fully
optimized at every iteration, on aggregate, the proposal distributions become more optimal as
iterations progress.

2.2. Algorithm details

We now gather the results of the above discussions into a complete algorithm summary. The
divergence minimization sampler’s objective function and gradient update rule produce a series
of covariance matrices for generating Gaussian proposals with an MCMC framework. Consistent
with the acceptance rule in the objective function, we incorporate a Metropolis rule for proposal
acceptance. At each iteration, we accept the proposal y from the current position xt with prob-
ability:

aðxt , yjCtÞ ¼ min 1,
pðyÞ
pðxtÞ

� �

where t is the current MCMC iteration, and Ct is the current Cholesky factor of the proposal dis-
tribution’s covariance matrix. Note that Ct represents the partially optimized Cholesky factor as
opposed to the fully optimized Lx used previously. We reserve discussion of convergence issues
for Sec. 2.4.

Algorithm 1. Divergence Minimization Sampler with Perpetual Adaptation

1: Inputs (defaults): target p(x), balancing parameter b (0.2), initial point x0, step size c
(0.002), step threshold h (10/c), initial scaling r (2), iterations M

2: Initialize: C0 :¼ r1
3: for t¼ 0,… ,M do
4: Generate �t � Nð0, 1Þ
5: Propose y ¼ xt þ Ct�t
6: Compute G ¼ rLJ ðxtÞ
7: Accept y with probability aðxt , yjCtÞ
8: Update xtþ1 ¼ y if accepted or xtþ1 ¼ xt if rejected.
9: If element jGijj > h, set Gij ¼ signðGÞ � h
10: Update Cholesky Factor: Ctþ1  Ct þ cG
11: end for
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Algorithm 1 summarizes the DM sampler with perpetual adaptation. In its most basic form,
the initial Cholesky factor is set to a diagonal matrix with equal scaling along each dimension
though a more complex initialization would also be valid. Furthermore, parameters including the
step size and balancing parameters are constant and supplied as inputs although they could be
adapted along with the Cholesky factor.

2.3. Divergence minimization: a case study

To understand the behavior of the DM sampler, we examine a case study using a single banana
distribution. The banana distribution is a unimodal distribution with non-Gaussian contours. For
context, the contours of this distribution are presented in Figure 1. The banana distribution is
known to be a difficult distribution to sample from with basic MCMC algorithms because of its
quickly changing local geometry, especially in the two tails (Haario, Saksman, and Tamminen
1999; 2001).

An intuitive way to understand the behavior of the DM sampler is to examine its samples.
Figure 2 presents parallel results from an adaptive Random Walk Metropolis (aRWM) and DM
sampler run. The aRWM algorithm used in this case study and subsequent examples is described
by Roberts and Rosenthal (2009). Each algorithm was run for 30,000 iterations with the first
1,000 removed as burn-in. Visually, we notice in the DM sampler results in Figure 2b that the
interior of the contours is evenly explored whereas aRWM has blank gaps within the tails of the
contours.

Quantitatively, we compare the algorithms using the acceptance rate and the expected squared
jumping distance (ESJD). The ESJD used here balances the goals of a high acceptance rate with
the increased exploration of larger steps and is defined as ESJD ¼PM

t¼2jjxt � xt�1jj22 (Roberts and
Rosenthal 2001; Gelman and Pasarica 2007). The DM sampler produced an acceptance rate of
72.25% with an ESJD of 2.4 as compared to the 8.95% acceptance rate and ESJD of 7.3 of
aRWM. Since we know that the DM sampler has a higher acceptance rate, this suggests that the
DM sampler takes smaller steps and is perhaps less efficient in terms of exploration than aRWM.
With that said, more careful steps suggest a lower risk of missing regions of interest.

Such behaviors can be explained by examining the contours of the proposal distribution at dif-
ferent points of the target distribution. Figure 3 presents the contours of the final proposal distri-
bution of the aRWM run centered at the final sample. In other words, they are the contours of
the covariance matrix of all samples generated. Notice that the contours have largely failed to
adapt to the specific geometry of the target distribution. They have simply expanded so that all
regions of meaningful density in the target are covered by the proposal distribution at any given
time but have not conformed to the unique geometry of the target distribution (B�edard 2007).

Figure 1. Banana distribution contours. (Note: lighter contours indicate higher density, red dot indicates the origin).
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One might expect that we could achieve similar success with even a simple RWM algorithm,
given a large enough proposal distribution.

We contrast this behavior to that demonstrated by the DM sampler in Figure 4. The DM sam-
pler delivers on the promise of adaptation to local behavior as illustrated by the contours closely
matching the region of interest. The proposal distributions benefit from adapted covariance
matrices that align with the current tail, resulting in a dramatically reduced likelihood of bad pro-
posals as compared to the aRWM proposals.

Figure 2. Banana distribution samples. The aRWM samples are more sparse and there are gaps in the tails whereas the DM sam-
pler produces more samples in the tails that reach further outwards. (Note: Red dot indicates starting points and blue dots indi-
cate samples).

Figure 3. Proposal distribution contours from the final iteration of aRWM centered at the final sample imposed on the banana
distribution contours. Notice that the contours do not match the behavior of the target distribution.

Figure 4. Sample DM sampler contours from the same algorithm execution. Notice that the proposal contours in the given itera-
tions conform to the local geometry of the target distribution.
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In summary, the contour plots demonstrate the intended behavior of the DM sampler to adapt
to local regions of interest. Such behavior aligns with the objective of producing desirable adapta-
tion. While it is common for algorithms to simply adapt to the scale of a target distribution, the
DM sampler adapts to the behavior of the target distribution, a completely different and much
more challenging task that is especially useful for target distributions with unique geometry.
Furthermore, while in this instance it seems that aRWM outperforms in efficiency, we must ques-
tion whether adapting to just the scale of a target distribution is scalable in higher dimensions
given that the density will become more and more sparse.

2.4. Convergence and finite adaptation

In a standard adaptive scheme, the algorithm typically involves certain technical conditions (such
as diminishing adaptation and containment, or finite adaptation) to guarantee convergence to the
target distribution (Roberts and Rosenthal 2007; Rosenthal 2011). In this work, we argue that cer-
tain target distributions, such as those with unusual geometry or those with many unique modes,
lend themselves to perpetual adaptation as no single Gaussian proposal distribution could hope
to sample well in all regions of interest. The banana example in the previous section is a good
example to illustrate this. As the banana distribution is clearly non-Gaussian, a single non-adapt-
ing Gaussian proposal cannot appropriately orient itself in the apex and in both tails. However,
the consequence of embracing perpetual adaptation is that the standard convergence framework
for adaptive MCMC is no longer compatible.

Our goal is to sample efficiently using region-specific proposal distributions while still fulfilling
the requirements of the standard convergence framework. As such, we propose a two phase
approach that limits adaptation to a finite number of iterations and subsequently transfers the les-
sons learned in adaptation to a Metropolis-Hastings framework. By limiting adaptation to a finite
number of iterations, convergence of the non-adaptive phase to the target distribution is guaran-
teed (Roberts and Rosenthal 2007; Rosenthal 2011).

Recall that the basis of the DM sampler is to approximate the optimal proposal distribution
characterized by the Cholesky factor Lx that maximizes the objective function s(x). As discussed
in Sec. 2.1, if we knew the values of all Lx, we could produce a simple Metropolis-Hastings algo-
rithm with defined proposal distributions. Of course, we have seen that optimizing s(x) is difficult
for a single point, let alone all points in space. Fortunately, the procedure described in Algorithm
1 constructs Cholesky factors Ct at each iteration t to approximate the given location’s optimal
proposal structure for sampling. If we record these Cholesky factors after each iteration, they can
act as a proxy for the optimal Cholesky factor for nearby points as well, assuming some degree of
continuity. Thus, after generating a collection of points and their associated Cholesky factors in
the adaptive phase, in each iteration of the non-adaptive phase we select the Cholesky factor asso-
ciated with the closest adaptive phase sample to construct a proposal covariance matrix for the
current iteration. The algorithm thus proposes points from the distribution qðyjxtÞ � Nðxt ,CtCT

t Þ
and accept with the following rule:

af ðxt , yjCt , ~CyÞ ¼ min 1,
pðyÞqðxtjyÞ
pðxtÞqðyjxtÞ

� �

where xt is the current position, y is the proposal, qðyjxtÞ � Nðxt ,CtCT
t Þ, qðxtjyÞ � Nðy, ~Cy~CT

y Þ,
and Ct and ~Cy are the Cholesky factors from the adaptive phase iterations that correspond to the
points closest to xt and y respectively. In other words, instead of calculating a new Cholesky fac-
tor for every new point, we select the point from our adaptive phase that is closest to the new
point and use its corresponding (approximate) Cholesky factor. This non-adaptive phase adheres
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to the standard validity criteria of a non-adaptive Metropolis-Hastings algorithm. A complete
algorithm summary of this scheme is presented in Algorithm 2.

We test the finite adaptation variant of the DM sampler on the banana distribution presented
in Sec. 2.3. Essentially, once the adaptive phase completes, we consolidate the samples and covari-
ance matrices and then begin the non-adaptive phase at the last adaptive phase sample. In Figure
5, we present 20,000 samples generated from the non-adaptive phase. In addition to the visual
indication of the non-adaptive samples covering the relevant portions of the state space, we note
that the acceptance rate is 55.93%, the proportion of samples in the left side of the distribution is
51%, and the sample mean of 0:31 �8:04� �

is approaching the true mean. These diagnostics
indicate the algorithm is sampling well and is converging to the target distribution as expected.

We note that the finite adaptation version of the DM sampler performs similarly to the per-
petually adapting version with the added benefit of adhering to established convergence criteria.

Algorithm 2. Divergence Minimization Sampler with Finite Adaptation

1: Inputs (defaults): target p(x), balancing parameter b (0.2), initial point x0, step size c
(0.002), step threshold h (10/c), initial scaling r (2), iterations M, finite adaptation threshold
F (M/2), finite subsample size s (M/20)

2: Initialize: C0: ¼ r1
3: Adaptive Phase
4: for t¼ 0,… ,F do
5: Generate �t � Nð0, 1Þ
6: Propose y ¼ xt þ Ct�t
7: Compute G ¼ rLJ ðxtÞ
8: Accept y with probability aðxt , yjCtÞ
9: Update xtþ1 ¼ y if accepted or xtþ1 ¼ xt if rejected.
10: If element jGijj > h, set Gij ¼ signðGÞ � h
11: Update Cholesky Factor: Ctþ1  Ct þ cG
12: end for
13: Let S be a sample of s points from 0, 1, :::F
14: Non-Adaptive Phase
15: for t¼ Fþ 1,… ,M do
16: Select Ct :¼ Ci where i 2 S, such that dðxi, xtÞ is minimized.
17: Generate �t � Nð0, 1Þ
18: Propose yt ¼ xt þ Ct�t
19: Select ~Cy :¼ Cj where j 2 S, such that dðxj, yÞ is minimized.

20: Accept y with probability af ðxt , yjCt , ~CyÞ
21: Update xtþ1 ¼ y if accepted or xtþ1 ¼ xt if rejected.
22: end for

Remark. We now comment on the choice of the Metropolis acceptance rule for the original DM
sampler as well as discuss an alternative that could perhaps motivate future work. Recall that
each iteration of the adaptive phase triggers the gradient update rule. Any proposal under this
framework will be asymmetric which at first glance would suggest the use of a Metropolis-
Hastings acceptance rule (Hastings 1970). Suppose for a moment that we were to consider a
Metropolis-Hastings rule. In other words, we replace the acceptance rule a with the following:

a�ðxt , yjCtÞ ¼ min 1,
pðyÞqðxtjyÞ
pðxtÞqðyjxtÞ

� �

10 A. DHARAMSHI ET AL.



where xt is the current position, y is the proposal, Ct is the Cholesky factor of the proposal

covariance matrix, qðyjxtÞ � Nðxt ,CtCT
t Þ, and qðxtjyÞ � Nðy, ðCt þ crLJ ðxtÞÞðCt þ crLJ ðxtÞÞTÞ:

The distribution of qðxtjyÞ considers the gradient step made in the process of moving from xt to
y, reflecting the asymmetry involved in returning from y to xt. In this case, reversibility would be
upheld at each individual iteration without introducing any finite adaptation (Roberts and Smith
1994; Bai, Roberts, and Rosenthal 2011; Craiu et al. 2015). However, the proposal kernels across
iterations are not necessarily identical. Concretely, visiting, leaving, and then returning to a point
can result in different proposal kernels at the same point due to the use of only a single gradient
step at each iteration. Thus, each individual step under the hypothetical Metropolis-Hastings
setup would be reversible but, in aggregate, the entire chain may not be. This perpetual adapta-
tion represents a departure from the established convergence theory. In this paper, we have
instead decided to proceed with a finite adaptation scheme that does guarantee convergence to
the target distribution.

3. Scout MCMC

The DM sampler is designed as a general procedure for rapid adaptation to local geometry.
Given the self-contained setup, it can be combined with other MCMC frameworks such as paral-
lel tempering to produce more complex samplers. In this section, we introduce an extension that
combines the DM Sampler with a two-chain parallel tempering setup. Specifically, the untem-
pered first chain uses the DM sampler, and the second chain is tempered by either a factor pro-
vided by the user or one proportional to the number of dimensions (Tawn, Roberts, and
Rosenthal 2019). Such an approach benefits from both the regional adaptation of the DM sampler
and the global exploration of parallel tempering swap moves. Given the single tempered chain
searching for new regions of density, we term this approach Scout MCMC.

3.1. Algorithm details

Scout MCMC generates proposals for the main chain qðytjxtÞ � Nðxt ,CtCT
t Þ, and accepts with

probability:

aðxt , ytjCtÞ ¼ min 1,
pðytÞ
pðxtÞ

� �

Then, it adapts the main chain Cholesky factor by crLJ ðxtÞ as before. Next, a proposal for
the scout chain is generated as qðctjstÞ � Nðst , rs1Þ, which is accepted according to the following

Figure 5. Finite adaptation DM sampler variant. Samples presented only include those from the non-adaptive phase.
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rule:

asðst , ctÞ ¼ min 1,
pðctÞs
pðstÞs

( )

Finally, Scout MCMC considers swapping xtþ1 and stþ1 every k iterations according to the
swap rule:

aswapðx, sÞ ¼ min 1,
pðxÞspðsÞ
pðxÞpðsÞs

( )

Algorithm 3. Scout MCMC with Perpetual Adaptation

1: Inputs (defaults): target p(x), balancing parameter b (0.2), temperature s (0.1), initial point
x0, step size c (0.002), step threshold h (10/c), initial scaling r (2), tempered scaling rs (9),
iterations M, swap frequency k (20)

2: Initialize: C0: ¼ r1, s0 ¼ x0
3: for t¼ 0,… ,M do
4: Main Chain Step
5: Generate �t � Nð0, 1Þ
6: Propose yt ¼ xt þ Ct�t
7: Compute G ¼ rLJ ðxÞ
8: Accept yt with probability aðxt , ytjCtÞ
9: Update xtþ1 ¼ yt if accepted or xtþ1 ¼ xt if rejected.
10: If element jGijj > h, set Gij ¼ signðGÞ � h
11: Update Cholesky Factor: Ctþ1  Ct þ cG
12: Scout Step

13: Propose ct � Nðst , rs1Þ and accept with probability min 1, pðctÞ
s

pðstÞs
n o

14: Update stþ1 ¼ ct if accepted or stþ1 ¼ st if rejected.
15: Swap Step
16: if t � 0 mod k then

17: Swap xtþ1 and stþ1 with probability min 1, pðstþ1Þpðxtþ1Þ
s

pðxtþ1Þpðstþ1Þs
n o

18: end if
19: end for

Algorithm 3 provides pseudocode for the implementation of Scout MCMC. Once again, con-
trol over step size and initial scaling is determined by the user to allow flexibility between targets.
For example, depending on the expected global region of interest, the tempered chain scaling can
be adjusted. Additional details can be added such as adapting the scaling of the tempered chain
or varying the limit on the frequency of swap moves.

3.2. Finite adaptation

Similar to the DM sampler, we present a two-phase finitely adapting variant of Scout MCMC.
The first phase is the procedure presented in Algorithm 3. In the second, non-adaptive phase, the
structure of the scout chain does not change. However, the main chain follows the same process
as the finitely adapting DM sampler where the Cholesky factor corresponding to the nearest iter-
ation of the adapting phase is used to construct proposal distributions in the non-adaptive phase.
This reduces the non-adapting phase to a Metropolis-Hastings algorithm. We present the pseudo-
code associated with the finitely adapting Scout MCMC in Algorithm 4.

12 A. DHARAMSHI ET AL.



Algorithm 4. Scout MCMC with Finite Adaptation

1: Inputs (defaults): target p(x), balancing parameter b (0.2), temperature s (0.1), initial point
x0, step size c (0.002), step threshold h (10/c), initial scaling r (2), tempered scaling rs (9),
iterations M, finite adaptation threshold F (M/2), swap frequency k (20), finite subsample
size s (M/20)

2: Initialize: C0: ¼ r1, s0 ¼ x0
3: Adaptive Phase
4: for t¼ 0,… ,F do
5: Main Chain Step
6: Generate �t � Nð0, 1Þ
7: Propose yt ¼ xt þ Ct�t
8: Compute G ¼ rLJ ðxÞ
9: Accept yt with probability aðxt , ytjCtÞ
10: Update xtþ1 ¼ yt if accepted or xtþ1 ¼ xt if rejected.
11: If element jGijj > h, set Gij ¼ signðGÞ � h
12: Update Cholesky Factor: Ctþ1  Ct þ cG
13: Scout Step
14: Propose ct � Nðst , rs1Þ
15: Accept ct with probability min 1, pðctÞ

s

pðstÞs
n o

16: Update stþ1 ¼ ct if accepted or stþ1 ¼ st if rejected.
17: Swap Step
18: if t � 0 mod k then

19: Swap xtþ1 and stþ1 with probability min 1, pðstþ1Þpðxtþ1Þ
s

pðxtþ1Þpðstþ1Þs
n o

20: end if
21: end for
22: Let S be a sample of s points from 0, 1, :::F
23: Non-Adaptive Phase
24: for t¼ Fþ 1,… ,M do
25: Main Chain Step
26: Select Ct :¼ Ci where i 2 S, such that dðxi, xtÞ is minimized.
27: Generate �t � Nð0, 1Þ
28: Propose yt ¼ xt þ Ct�t
29: Select ~Ct :¼ Cj where j 2 S, such that dðxj, yÞ is minimized.

30: Accept y with probability af ðxt , yjCt , ~CtÞ
31: Update xtþ1 ¼ y if accepted or xtþ1 ¼ xt if rejected.
32: Scout Step

33: Propose ct � Nðst , rs1Þ and accept with probability min 1, pðctÞ
s

pðstÞs
n o

34: Update stþ1 ¼ ct if accepted or stþ1 ¼ st if rejected.
35: Swap Step
36: if t � 0 mod k then

37: Swap xtþ1 and stþ1 with probability min 1, pðstþ1Þpðxtþ1Þ
s

pðxtþ1Þpðstþ1Þs
n o

38: end if
39: end for
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In the next section, we present examples demonstrating that similar to the DM sampler, the
finite adaptation version of Scout MCMC performs similarly in practice to the perpetually adapt-
ing version but has the theoretical advantage of adhering to established convergence criteria.

4. Examples

In this section, we examine the performance of the DM Sampler and Scout MCMC using a var-
iety of target distributions. We focus on distributions with atypical geometry as well as a subset
of multimodal distributions that have contiguous modes. It is important to note that traditional
diagnostics such as effective sample size (ESS) will be misleading in the case of multimodal distri-
butions (Turner and Neal 2017; Elvira, Martino, and Robert 2018). ESS specifically may prefer a
sample that fails to leave the initial mode as compared to a sample that explores modes separated
by a low probability chasm. ESJD is arguably a better diagnostic as it increases with increased
step size and acceptance rate, both being favorable behaviors. Recall that the ESJD is defined

as ESJD ¼PM
t¼2jjxt � xt�1jj22:

Given that there is a lack of consensus on appropriate diagnostics for targets with more than
one mode, we have selected target distributions with easily computed true expected values to use
as reference points for the simulations. Going forward, we will refer to the true expected value as
E½X�, the estimated expected value with an MCMC sample as Ê½X�, and the Euclidean distance
between the true and estimated values as dðE½X�, Ê½X�Þ:

As an example of a target distribution with easily computed expectations, the basis vector target
that will be discussed in detail consists of a mixture of Gaussian distributions where each component
Gaussian lies on one of the basis vectors and all are equidistant from the origin. This leads to a target
with negligible density at the origin but with an expected value that is simply at the origin itself. A
similar but much more challenging target consisting of a mixture of banana distributions presents a
target with a mean at the origin that also has complex geometry. In these instances, we can use the
distance from the sample mean to the origin, the true mean, to evaluate algorithm performance.

In the following examples, we compare the DM Sampler and Scout MCMC with standard
Random Walk Metropolis (RWM), adaptive RWM (aRWM), Metropolis-adjusted Langevin algo-
rithm (MALA), and Parallel Tempering (PT). For clarity, RWM generates proposals with a single
shared Gaussian distribution, aRWM generates proposals using the empirical covariance matrix
up to the current iteration, MALA uses gradient information to improve proposals, and PT exe-
cutes multiple RWM chains on the target distribution with different levels of tempering applied
(Swendsen and Wang 1986; Geyer 1991; Roberts and Rosenthal 1998). For consistency, we match
the maximum tempering level used by parallel tempering to the level used by the scout chain in
Scout MCMC. We also execute two versions of parallel tempering: one with 2 chains to match
Scout MCMC, and one with 5 or 10 chains as would be more likely in practice. Finally, we
include both the fully adaptive versions of the DM Sampler and Scout MCMC along with the var-
iants that limit adaptation and transition to a second non-adaptive phase. The code used to

Figure 6. Double banana distribution contours. (Note: lighter contours indicate higher density, red dot indicates the origin).
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generate the following examples along with implementations of each algorithm in Python are pro-
vided to supplement the discussion1.

4.1. Double banana distribution

The first distribution we consider is an extension of the banana distribution examined in Sec. 2.3.
Specifically, we consider a pair of banana distributions with overlap in the tails. This results in
two primary modes along the curves of the two bananas as well as two secondary modes at the
intersections. Figure 6 provides the contours of this distribution.

All of the algorithms are run for 50,000 iterations with the first 1,000 samples discarded as
burn-in. Table 1 presents the results of this experiment. For this specific distribution, the target
mean is 0 �25� �

:

Notice that the samples of aRWM and Scout MCMC are closest to the mean of the distribu-
tion. It is worth noting that there is negligible density at the mean as illustrated by Figure 6 so
the ability to achieve the correct mean indicates that both bananas have been visited. In compari-
son, standard RWM, MALA, and parallel tempering have not achieved the level of success of the
other algorithms. Even with 5 chains, parallel tempering has largely failed to converge within the
50,000 iterations. The distinction between aRWM and Scout MCMC lies in the efficiency diag-
nostics. We see that Scout MCMC accepts over 10 times as many proposals as aRWM though it
has a smaller ESJD. A large acceptance rate is not necessarily indicative of a better algorithm but
with both algorithms performing similarly, this could indicate that Scout MCMC produces higher
quality proposals. Since ESJD is a measure of both the acceptance rate and the step size made
with each move but Scout MCMC has a much higher acceptance rate, this would indicate that
aRWM proposes moves with much greater step sizes than Scout MCMC. This is expected, how-
ever, as Scout MCMC uses a user-specified cooldown period where the main chain makes local
moves and does not swap with the scout chain. Finally, we note that the finite adaptation variants
of the DM sampler and Scout MCMC both perform similarly to their fully adapting counterparts
though they tend to accept fewer proposals.

In addition to sample diagnostics, we also examine the samples themselves in Figure 7. A not-
able observation is the dramatic imbalance of the parallel tempering samples in Figure 7c, d as
well as the DM samples in Figure 7f. RWM also experiences slight imbalance but more notably
does not reach far into the tails within the number of iterations. Most surprising is that MALA
has not managed to reach the bottom banana regardless of the choice of parameters. We attribute
this largely to the gradient pulling proposals away from the tails and thus hampering exploration.

Table 1. Double banana target results. We see here that aRWM and Scout MCMC produced sample means that are closest to
the true mean. While aRWM has a greater ESJD value, Scout MCMC has a greater acceptance rate.

Accept (%) Ê[X] d(E[X], Ê[X]) ESJD

RWM 51.89 þ0:31 �17:77� �
7.24 0.78

aRWM 7.76 þ0:16 �24:84� �
0.23 40.2

PT (2 chains) 37.59 �2:29 �19:31� �
6.13 0.99

PT (5 chains) 40.25 �2:40 �4:210� �
20.92 2.16

MALA 88.54 þ0:17 �1:94� �
23.06 0.17

DM Sampler 83.50 �2:35 �23:76� �
2.66 0.80

DM Finite 68.59 �2:25 �24:02� �
2.45 0.61

Scout MCMC 83.41 �0:22 �23:78� �
1.24 11.1

Scout Finite 73.57 �0:22 �18:83� �
6.17 11.8

1https://github.com/AmeerD/Scout-MCMC
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The contrast between the DM sampler and Scout MCMC samples highlights the regulating abil-
ities of the Scout chain to help the DM sampler escape from extreme regions. In this example,
the left tail in Figure 7f could be considered an extreme region. Both the aRWM and Scout
MCMC plots exhibit desirable sampling behavior as the samples are well dispersed over the target
and seemingly balanced. However, the primary difference between the two algorithms in this
example is the relative concentration of samples due to aRWM’s tendency to reject proposals and
stay at the same points whereas Scout MCMC produces a larger number of unique points.

Finally, we plot the samples generated by the finite versions of the DM sampler and Scout
MCMC in Figure 8. The samples presented largely match those of the fully adaptive versions.
This indicates that the bank of covariance matrices generated in the adaptive phase is sufficient
to produce region specific samples as intended.

Figure 7. Double Banana Samples. PT and the DM sampler have trouble moving away from tail regions. The best performing
algorithms are aRWM and Scout MCMC as they achieve the most accurate sample mean and highest ESJD values. (Note: Red dot
indicates starting points and blue dots indicate samples).

Figure 8. Double Banana Samples from the finite variants of the DM Sampler and Scout MCMC. Both algorithms variants per-
form in line with their perpetually adapting counterparts.
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4.2. Basis vector distribution

As described briefly in the prelude to this section, the basis vector target consists of a series of
normal distributions along the basis vectors in R

4: Formally, the distribution is a mixture of the
following normal distributions:

N 10e1, I4ð Þ,N �10e1, I4ð Þ,N 10e2, I4ð Þ,N �10e2, I4ð Þ,
N 10e3, I4ð Þ,N �10e3, I4ð Þ,N 10e4, I4ð Þ, and N �10e4, I4ð Þ

where ei is a basis vector in the ith direction and I4 is the 4D identity matrix.
The key feature of this distribution is that the expected value is at the origin but there is negli-

gible density there. As such, any MCMC algorithm that hopes to be successful must be able to
cross a vast low probability desert to move between modes. Each algorithm was run for 40,000
iterations with the first 2,000 iterations discarded as burn-in. The results of the 4D basis vector
target are presented in Table 2.

Note that all of RWM, aRWM, MALA, and the DM sampler produced sample means that
were far from the origin, the true mean. This indicates that these algorithms did not visit all of
the modes in a balanced manner and likely got stuck in one or more select modes. This behavior
is not unexpected, however, as these algorithms have no mechanism to cross low probability
boundaries. Scout MCMC and parallel tempering, in contrast, produced sample means approach-
ing the origin with Scout MCMC outperforming both cases of parallel tempering. In this instance,
there does not appear to be any major impact from increasing the number of chains from two to
five in parallel tempering aside from a larger ESJD. Finally, we note that the finite variants of the

Table 2. 4D basis vector target results. Both versions of Scout MCMC and PT produced sample means that were closest to the
true mean. PT slightly outperforms Scout MCMC in terms of ESJD but both variants of Scout MCMC have slightly closer means
and higher acceptance rates.

Accept (%) d(E[X], Ê[X]) ESJD

RWM 37.88 10.03 1.09
aRWM 29.43 10.03 1.09
PT (2 chains) 37.63 2.67 1.47
PT (5 chains) 37.38 2.76 2.13
MALA 49.35 9.99 1.81
DM Sampler 70.89 10.09 0.39
DM Finite 69.72 10.05 0.39
Scout MCMC 70.60 1.01 1.01
Scout Finite 71.06 1.26 1.04

Figure 9. 4D basis vector trace plots. Notice that both PT and Scout MCMC are able to reach �10, 0, and 10 in all four
dimensions.
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DM sampler and Scout MCMC perform in line with their respective fully adapting versions, vali-
dating their specification as non-adapting approximations.

To confirm that all eight modes were visited (as opposed to, say, two opposing modes with a
mean that is equal to the origin), we examine the trace plots of parallel tempering with 5 chains
and Scout MCMC in Figure 9. Each trace plot represents one of the dimensions and for this tar-
get distribution, we should see the trace plots reaching �10, 0 and 10 in all dimensions. From
the plots, it is clear that both algorithms are capable of moving between modes in a frequent
manner and that all modes have been visited. It is at this juncture that we turn to the point of
efficiency. Notice the difference in acceptance rate and ESJD between Scout MCMC and parallel
tempering in Table 2. Scout MCMC has a tendency to accept almost twice as many proposals as
parallel tempering even though parallel tempering takes larger steps. This is in part due to parallel
tempering having no limit on the frequency of swap moves whereas Scout MCMC is set to only
be able to consider swapping every 20 iterations.

4.3. Banana bunch distribution

The next target consists of a mixture of 12 banana distributions in R
3 arranged such that there is

even less interaction than there is in the double banana example. We call this distribution the
banana bunch. As this example is in R

3, we cannot simply present the contours. However, the
distribution can be understood as the mixture of three groups. The projection of the target on
each pair of axes (x-y, x-z, and y-z) appears as the contours in Figure 10.

Combining all three groups will result in the intersection of the apexes of two component dis-
tributions at ±40 along each axis. This results in a target with six modes, each far from the origin,
and 24 tails extending from the modes toward each other. Once again, we capitalize on the sym-
metry of our targets and find the expected value to be at the origin. Though the origin has negli-
gible density, scatter plots of samples projected down to planes composed of the basis vectors can
be slightly misleading. Figure 11 presents a sample generated directly from the target distribution.
The points seemingly at the origin are actually” above” and” below” the origin with respect to the
axis missing from the respective plot.

Given the more complex nature of this distribution, we increase the number of samples for all
algorithms to 100,000 with the first 1,000 discarded as burn-in. In addition to acceptance rate,
first moment, and ESJD, we also consider the second moment, the expectation of the element-
wise square of the samples. Such an expectation will assess how well the tails have been explored.
A sample that concentrates too heavily in the 6 modes will overshoot this expectation even if it
successfully produces a mean near the origin. The true value of this expectation is
400 400 400
� �

: Table 3 presents the results of our experiment.

Figure 10. Projections of the banana bunch distribution on each pair of axes (x-y, x-z, and y-z). (Note: lighter contours indicate
higher density, red dot indicates the origin).
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Perhaps the most surprising result in Table 3 is that the sample mean produced by each algo-
rithm is quite close to the true expected value although aRWM and Scout MCMC are clearly the
best performers on that front. Regarding the squared expected value, Scout MCMC performs the
best even though the results for parallel tempering with 5 chains presents a convincing case for
its convergence properties. We note however that parallel tempering with 2 chains fails to match
the performance of either Scout MCMC or parallel tempering with 5 chains. This suggests that 2
chains is not generally sufficient without a more nuanced strategy on the main chain such as
using the DM sampler in Scout MCMC. Finally, with respect to ESJD, we note that aRWM and
Scout MCMC are clearly the best performers using this efficiency metric. However, we warn the
reader to recognize that aRWM accepted less than 2% of proposals, did not produce a sample
second moment that was close to the true second moment, and finished the algorithm with a
covariance matrix with diagonal 862 1000 209

� �
: This is an indication that as the dimension

increases, aRWM relies heavily on expanding its reach to cover the whole region of interest rather
than conforming to the shape of the target distribution. The cost of this behavior is that the pro-
posals are not always of high quality and one must hope that it produces enough proposals to
extract a decent set of good samples in a limited amount of time. In this case, the enormous pro-
posal distribution was not sufficient to fully explore the tails leading in from the modes toward
the origin, thus producing an inaccurate sample second moment.

In order to be complete, however, we must also examine the plots of samples (projected to
2D) to understand whether our algorithms truly explore all modes and tails. Once again, we refer
the reader to Figure 11 to view the expected behavior. Given that RWM, MALA, and the DM
sampler have no mechanisms for inter-mode movement and that the numerical results reflect this

Figure 11. True banana bunch samples. Presented are samples generated directly from the target distribution projected onto
the x-y, x-z, and y-z plane.

Table 3. Banana bunch results. Although most algorithms come quite close to the true expected mean, not all are successful
in finding the squared mean. The best performing ones are Scout MCMC, the finite variance of Scout MCMC, and PT with five
chains. However, even with five chains, PT has a much less favorable ESJD than either Scout MCMC, each only utilizing two
chains.

Accept (%) d(E[X], Ê[X]) d(E[X2], Ê[X2]) ESJD

RWM 48.19 17.04 342.9 1.19
aRWM 1.76 1.97 338.0 14.00
PT (2 chains) 41.38 15.01 377.7 1.72
PT (5 chains) 42.88 11.76 132.0 3.54
MALA 3.17 12.62 576.7 0.1
DM Sampler 77.05 3.83 316.7 0.98
DM Finite 57.71 12.05 334.0 0.77
Scout MCMC 79.11 1.26 88.5 13.53
Scout Finite 63.34 2.6 109.6 10.99
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fact, we focus on the remaining algorithms from here. We also focus on the 5 chain version of
parallel tempering given that it outperformed the 2 chain version.

The visual results of Figure 12 reflect the behaviors noted by the diagnostics in Table 3.
Adaptive RWM struggles to explore the tails as well as the z-axis which results in the poor
squared expected value. Parallel tempering, in contrast, performs better in the tails but does not
explore the distribution evenly within the specified number of iterations which manifests in the
poorer expected value. In addition, there are a number of samples well beyond the modes that
are the result of a swap from a tempered chain to the main chain. With Scout MCMC and its
finite variant, we see the most appropriate distinction between mode and tail concentrations
which manifests in the best squared expectation. They also do so with a higher frequency of
points than aRWM or parallel tempering. The highly efficient proposals are realized even when
the large distance between modes of the basis vector example is combined with the unusual
geometry of the banana examples thus illustrating the ability of Scout MCMC to deliver on the
promises of a multimodal sampler that excels at rapid adaptation to local geometry.

4.4. Bayesian linear regression with horseshoe priors

The final example target distribution is motivated by a more practical scenario. MCMC methods
are frequently used in Bayesian inference and there is a lot of work being done to develop meth-
ods that can sample from complex posterior distributions. To test the DM sampler and Scout

Figure 12. Banana Bunch Samples (projected onto the x-y, x-z, and y-z planes). aRWM produces much sparser plots that reflect
its inability to explore the tails of the bananas. PT, despite having more samples, still results in inaccurate sample statistics
because of its imbalance, with many points skewing to one side. The two Scout MCMC variants produce the most optimal results
with a large and balanced set of samples as well as strong exploration of the banana tails.
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MCMC in such a situation, we construct a Bayesian linear regression scenario with half of the
coefficients set to zero. In Bayesian settings, sparsity in regression coefficients can be induced
using a horseshoe prior (Carvalho, Polson, and Scott 2009). The horseshoe prior is known to be
difficult to sample from given the use of the Cauchy distribution. Our example uses 20 independ-
ent variables and 1000 observations generated from a standard normal distribution. The true val-
ues of the first 10 coefficients are 10 5 2:5 2 1 0:75 0:5 0:25 0:2 0:1

� �
and the

second set of 10 coefficients are all set to 0. In addition to the 20 coefficients, there is one error
variance parameter, 20 horseshoe coefficient parameters, and one global horseshoe parameter for
a total of 42 parameters to sample.

We execute each of the algorithms for 50,000 iterations with the first 5000 discarded as burn-
in. We modify some of the algorithms to accommodate the higher dimension of this example.
For parallel tempering, we execute a 2 chain version as before but replace the 5 chain version
with 10 chains. For the DM sampler, we adapt the step size to shrink upon rejecting a sample.
Finally, for both the DM sampler and Scout MCMC, we only execute the adaptive versions. To
compare across algorithms, we consider the acceptance rate, the distance between the true and
estimated regression coefficients, and the ESJD. Table 4 presents the results of the experiment.

As illustrated in the results, the majority of the algorithms tested produced posterior means
that are close to the true coefficient values with aRWM being a notable exception. Also of interest
are the ESJD values. Of the algorithms that did converge to the true parameter values, only the
DM sampler and Scout MCMC had reasonably high ESJD values, suggesting that they sampled
most effectively from the posterior. This example illustrates that both algorithms introduced here
can be competitive with established MCMC methods in a practical setting.

We conclude this section by repeating the notion of efficient and effective sampling. We find
that aRWM may be efficient from an ESJD perspective and parallel tempering is effective as a
way to explore different modes, but neither prove to be adequate across the board. Instead, Scout
MCMC proves itself as an efficient and effective “smart” sampler by adopting a strategy of com-
bining rapid regional adaptation with heavy tempering for mode swapping.

5. Discussion and future work

In this paper we have introduced an algorithm designed to rapidly adapt to the local behavior of
a given target distribution. Such adaptation is accomplished through the minimization of the
information projection (I-projection) side of the KL Divergence between the target distribution
and the proposal distribution family. By combining this divergence minimization sampler with
one highly tempered chain to create Scout MCMC, we illustrate how the DM sampler may inte-
grate into other existing MCMC approaches to combine algorithm strengths. Finally, we leverage
the adaptation of the DM sampler and Scout MCMC in a two-stage algorithm that uses the pro-
duced covariance matrices of the DM sampler and Scout MCMC in the first phase to initialize a
follow up Metropolis-Hastings phase that adheres to standard convergence criteria. This finite
adaptation algorithm continues to use optimized local samplers to efficiently sample from local
geometries without needing perpetual adaptive steps.

Table 4. Bayesian linear regression with horseshoe priors results.

Accept (%) d(E[X], Ê[X]) ESJD

RWM 0.48 0.21 1.0e-4
aRWM 1.92 7.64 1.0e-2
PT (2 chains) 0.52 0.2 5.7e-5
PT (10 chains) 0.45 0.18 3.8e-5
MALA 90.98 2.12 1.9e-4
DM Sampler 34.98 0.23 2.4e-3
Scout MCMC 5.51 0.26 2.1e-2
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Sampling from target distributions with irregular geometry is well-established as a difficult
problem. Our algorithms address this challenge by focusing on the local behavior of the target
distribution at the current chain position. This strategy offers a number of key advantages. First,
for any given iteration, local covariance structures can often be more informative than the global
covariance. Our algorithms are also able to adapt to the target without a large reserve of previous
samples. This is critical when sampling from distributions with rapid changes in curvature.
Finally, our DM sampler is designed to be modular. Here we have illustrated how the DM sam-
pler can be integrated into a parallel tempering algorithm, as well as a Metropolis-Hastings algo-
rithm. We then studied how the combined approaches merged the strengths of each individual
component. The DM sampler could similarly be used in conjunction with other more sophisti-
cated algorithms. For example, combining the JAMS algorithm of Pompe, Holmes, and
Łatuszy�nski (2019) with the DM sampler could be effective in multimodal settings by allowing
for rapid adaptation immediately after executing a jump move into a new mode. The DM sam-
pler could also be combined with Multiple-Try algorithms to select search directions (Liu, Liang,
and Wong 2000; Martino 2018).

We have presented the baseline DM sampler algorithm in this paper and believe that there is
much room for future research. For example, the criteria required for a non-diminishing perpetu-
ally adaptive algorithm to converge remains under-explored. Moreover, one might be interested
in studying whether there is an optimal frequency to adaptation and swapping, or whether there
are certain target geometries that are more or less challenging to explore. Smaller changes such as
adapting step size and other fixed parameter inputs are also possibilities. Finally, there is certainly
room to explore different objective functions in the DM sampler. Some possibilities include test-
ing alternate similarity measures or replacing the regulating term to encourage different behav-
iors. Such modifications could further improve the performance of the DM sampler and Scout
MCMC beyond what has been demonstrated in this paper.

A. Appendix

A.1. Approximating the gradient

Since,

J ðxÞ ¼ bHq þ bE� log pðxþ L�Þ� �þ E� min 0, log pðxþ L�Þ � log pðxÞ
 �� �
the gradient of J ðxÞ is:

rLJ ðxÞ
¼ rLbHq þrLbE� log pðxþ L�Þ� �þrLE� min 0, log pðxþ L�Þ � log pðxÞ
 �� �
¼ brLHq þ bE� rL log pðxþ L�Þ� �þ E� rL min 0, log pðxþ L�Þ � log pðxÞ
 �� �

Consider each of the three terms of the above of rLJ ðxÞ individually:
Term 1: brLHq: We can use the form of the entropy of a multivariate normal distribution to evaluate this

gradient:

brLHq ¼ brL
k
2
log ð2peÞ þ 1

2
log ðjLjjLT jÞ

� 

¼ brL
k
2
log ð2peÞ þ 1

2

Xk
i¼1

log L2ii

 !

¼ brL

Xk
i¼1

log Lii

 !

¼ bdiag
1
L11

, :::,
1
Lkk

� 
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Term 2: bE� rL log pðxþ L�Þ� �
: First, note the following:

bE� rL log pðxþ L�Þ� � ¼ bE�
1

pðxþ L�Þ p
0ðxþ L�Þ�T

� 	

The expectation on the right-hand side does not simplify cleanly. However, the interior of the expectation
is simple enough to evaluate for a given �. As such we can draw a number of �j � Nð0,1Þ at each iter-
ation and compute an unbiased estimate of bE� rL log pðxþ L�Þ� �

with Simple Monte Carlo. That is, at
each iteration, we compute:

bE� rL log pðxþ L�Þ� � 	 1
J

XJ
j¼1

b
pðxþ L�jÞ p

0ðxþ L�jÞ�Tj

Term 3: E� rL min 0, log pðxþ L�Þ � log pðxÞ
 �� �
: Similar to the second piece of the gradient, note that this expect-

ation does not simplify but we can produce an unbiased estimate by relying on a series of draws of �j �
Nð0,1Þ in a given iteration.

E� rL min 0, log pðxþ L�Þ � log pðxÞ
 �� �
	 1

J

XJ
j¼1
rL min 0, log pðxþ L�jÞ � log pðxÞ
 �

However, the presence of the minimum operator suggests this summation will not simplify in the same
way as the previous component. Considering the two cases, we can naturally separate them depending on
if log pðxþ L�tÞ � log pðxÞ:
In the first case, if log pðxþ L�tÞ � log pðxÞ, acceptance of the proposal under a Metropolis framework is
guaranteed and:

rL min 0, log pðxþ L�tÞ � log pðxÞ
 � ¼ 0

If log pðxþ L�tÞ < log pðxÞ, then the Metropolis ratio is less than 1 and we have,

rL min 0, log pðxþ L�tÞ � log pðxÞ
 �
¼ rL log pðxþ L�tÞ � log pðxÞ� �
¼ 1

pðxþ L�tÞ p
0ðxþ L�tÞ�Tt

Consolidating the three terms, to search for an optimal local proposal distribution, at each iteration of the
MCMC chain we perform the following gradient-based update (we omit the iteration subscript t on x and L for
clarity purposes):

Ltþ1 ¼ Lt þ crLJ ðxÞ where

rLJ ðxÞ ¼ bdiag
1
L11

, :::,
1
Lkk

� 
þ 1

J

XJ
j¼1

b
pðxþ L�jÞ p

0ðxþ L�jÞ�Tj

þ 1
J

XJ
j¼1
rL min 0, log pðxþ L�jÞ � log pðxÞ
 �

:

Note further that the interior of the Term 3 summation reduces into the following two cases depending on the
value of �j,

rL min 0, log pðxþ L�jÞ � log pðxÞ
 �

¼
0 if log pðxþ L�jÞ � log pðxÞ

1
pðxþ L�jÞ p

0ðxþ L�jÞ�Tj if log pðxþ L�jÞ < log pðxÞ :

8><
>:

Note that the current position is denoted x, the proposal is y ¼ xþ L�, the standard multivariate draw is �j,
and c is the predetermined step size.
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